283 resultados para injection site reaction
Resumo:
This practice-led research project explores the possibilities for restaging and reconfiguring contemporary art installations in multiple and different locations. By exploring ideas and art that demonstrate a kaleidoscopic approach to creative practice, this project examines how analysing artists' particular processes can achieve new understandings and experiences of installation art. This project achieves this through reflection on, and analysis of creative works made throughout the research, and a critical examination of contemporary art practices.
Resumo:
Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry
Resumo:
The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation, The mechanisms of these processes have been elucidated by a combination of product ion and labelling (H-2 and C-13) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of 'C4H8' is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of 'C6H12' occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-l-ene and hex-l-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-l-ene and hex-l-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].
Resumo:
We have investigated the gas-phase reaction of the alpha-aminoacetate (glycyl) radical anion (NH2(sic)CHCO2-) with O-2 using ion trap mass spectrometry, quantum chemistry, and statistical reaction rate theory. This radical is found to undergo a remarkably rapid reaction with O-2 to form the hydroperoxyl radical (HO2(sic)) and an even-electron imine (NHCHCO2-), with experiments and master equation simulations revealing that reaction proceeds at the ion molecule collision rate. This reaction is facilitated by a low-energy concerted HO2(sic) elimination mechanism in the NH2CH(OO(sic))CO2- peroxyl radical. These findings can explain the widely observed free-radical-mediated oxidation of simple amino acids to amides plus alpha-keto acids (their imine hydrolysis products). This work also suggests that imines will be the main intermediates in the atmospheric oxidation of primary and secondary amines, including amine carbon capture solvents such as 2-aminoethanol (commonly known as monoethanolamine, or MEA), in a process that avoids the ozone-promoting conversion of (sic)NO to (sic)NO2 commonly encountered in peroxyl radical chemistry.
Resumo:
Alkylperoxyl radicals are intermediates in the oxidation Of hydrocarbons. The reactive nature of these intermediates, however, has made therin elusive to direct observation and isolation. We have employed ion trap mass spectrometry to synthesize and characterize 4-carboxylatocyclohexyl radical anions ((center dot)C(6)H(10)-CO(2)(-)) and observe their reactivity in the presence of dioxygen. The resulting reaction is facile (k = 1.8 x 10(-10) cm(3) molecule(-1) s(-1) or 30% of calculated collision rate) and results in (i) the addition Of O(2) to form stabilized 4-carboxylatocyclohexylperoxyl radical anions ((center dot)OO-C(6)H(10)-CO(2)(-)), providing the first direct observation of a cyclohexylperoxyl radical, and (ii) elimination of HO(2)(center dot) and HO(center dot) radicals consistent with recent laser-induced fluorescence studies of the reaction of neutral cyclohexyl radicals with O(2). Electronic structure calculations at the B3LYP/6-31+G(d) level of theory reveal viable pathways for the observed reactions showing that formation of the peroxyl radical is exothermic by 37 kcal mol(-1) with subsequent transition states its low as -6.6 kcal mol(-1) (formation of HO(2)(center dot)) and -9.1 kcal mol(-1) (formation of HO(center dot)) with respect to the entrance channel. The combined computational and experimental data Suggest that the structures of the reaction products correspond to cyclohexenes and epoxides from HO(2)(center dot) and HO(center dot) loss, respectively, while alternative pathways leading to cyclohexanone or ring-opened isomers ate not observed, Activation of the charged peroxyl radical (center dot)OO-C(6)H(10)-CO(2)(-) by collision induced disassociation also results in the loss Of HO(2)(center dot) and HO(center dot) radicals confirming that these products are directly connected to the peroxyl radical intermediate.
Resumo:
Aim To establish the suitability of multiplex tandem polymerase chain reaction (MT-PCR) for rapid identification of oestrogen receptor (ER) and Her-2 status using a single, formalin-fixed, paraffin-embedded (FFPE) breast tumour section. Methods Tissue sections from 29 breast tumours were analysed by immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH). RNA extracted from 10μm FFPE breast tumour sections from 24 of 29 tumours (14 ER positive and 5 Her-2 positive) was analysed by MT-PCR. After establishing a correlation between IHC and/or FISH and MT-PCR results, the ER/Her-2 status of a further 32 randomly selected, archival breast tumour specimens was established by MT-PCR in a blinded fashion, and compared to IHC/FISH results. Results MT-PCR levels of ER and Her-2 showed good concordance with IHC and FISH results. Furthermore, among the ER positive tumours, MT-PCR provided a quantitative score with a high dynamic range. Threshold values obtained from this data set applied to 32 archival tumour specimens showed that tumours strongly positive for ER and/or Her-2 expression were easily identified by MT-PCR. Conclusion MT-PCR can provide rapid, sensitive and cost-effective analysis of FFPE material and may prove useful as triage to identify patients suited to endocrine or trastuzumab (Herceptin) treatment.
Resumo:
To harness safe operation of Web-based systems in Web environments, we propose an SSPA (Server-based SHA-1 Page-digest Algorithm) to verify the integrity of Web contents before the server issues an HTTP response to a user request. In addition to standard security measures, our Java implementation of the SSPA, which is called the Dynamic Security Surveillance Agent (DSSA), provides further security in terms of content integrity to Web-based systems. Its function is to prevent the display of Web contents that have been altered through the malicious acts of attackers and intruders on client machines. This is to protect the reputation of organisations from cyber-attacks and to ensure the safe operation of Web systems by dynamically monitoring the integrity of a Web site's content on demand. We discuss our findings in terms of the applicability and practicality of the proposed system. We also discuss its time metrics, specifically in relation to its computational overhead at the Web server, as well as the overall latency from the clients' point of view, using different Internet access methods. The SSPA, our DSSA implementation, some experimental results and related work are all discussed
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.
Resumo:
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial datasets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally-constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here, we discuss a marine record of eruptive and mass-wasting events spanning ~250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlation of these events across sediment cores collected offshore of the south and south west of Montserrat, have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents travelled at least 33 km offshore, and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Resumo:
Objectives To determine: (1) the accuracy of cytology scientists at assessing specimen adequacy by rapid on-site evaluation (ROSE) at fine needle aspiration (FNA) cytology collections; and (2) whether thyroid FNA with ROSE has lower inadequacy rates than non-attended FNAs. Methods The ROSE of adequacy for 3032 specimens from 17 anatomical sites collected over a 20-month period was compared with the final report assessment of adequacy. ROSE was performed by 19 cytology scientists. The report profile for 1545 thyroid nodules with ROSE was compared with that for 1536 consecutive non-ROSE thyroid FNAs reported by the same cytopathologists during the study period. Results ROSE was adequate in 75% (2276/3032), inadequate in 12% (366/3032) and in 13% (390/3032) no opinion was rendered. Of the 2276 cases assessed as adequate by ROSE, 2268 (99.6%) were finally reported as adequate for assessment; eight specimens had adequacy downgraded on the final report. Fifty eight per cent of cases with a ROSE assessment of inadequate were reported as adequate (212/366), whereas 93% (363/390) with no opinion rendered were reported as adequate. The overall final report adequacy rate for the 3032 specimens was 94% (2843/3032). Confirmation of a ROSE of adequacy at reporting was uniformly high amongst the 19 scientists, ranging from 98% to 100%. The inadequacy rate for thyroid FNAs with ROSE (6%) was significantly (P < 0.0001) lower than for non-ROSE thyroid FNAs (17%). A significantly (P = 0.02) higher proportion of adequate ROSE thyroid specimens was reported with abnormalities, compared with non-ROSE thyroid collections. Conclusions Cytology scientists are highly accurate at determining specimen adequacy at ROSE for a wide range of body sites. ROSE of thyroid FNAs can significantly reduce inadequate reports.
Resumo:
GAEC1 is a novel gene located at 7q22.1 that was detected in our previous work in esophageal cancer. The aims of the present study are to identify the copy number of GAEC1 in different colorectal tissues including carcinomas, adenomas, and nonneoplastic tissues and characterize any links to pathologic factors. The copy number of GAEC1 was studied by evaluating the quantitative amplification of GAEC1 DNA in 259 colorectal tissues (144 adenocarcinomas, 31 adenomas, and 84 nonneoplastic tissues) using real-time polymerase chain reaction. Copy number of GAEC1 DNA in colorectal adenocarcinomas was higher in comparison with nonneoplastic colorectum. Seventy-nine percent of the colorectal adenocarcinomas showed amplification and 15% showed deletion of GAEC1 (P < .0001). Of the adenomas, 90% showed deletion of GAEC1, with the remaining 10% showing normal copy number. The differences in GAEC1 copy number between colorectal adenocarcinoma, colorectal adenoma, and nonneoplastic colorectal tissue are significant (P < .0001). GAEC1 copy number was significantly higher in adenocarcinomas located in distal colorectum compared with proximal colon (P = .03). In conclusion, GAEC1 copy number was significantly different between colorectal adenocarcinomas, adenomas, and nonneoplastic colorectal tissues. The copy number was also related to the site of the cancer. These findings along with previous work in esophageal cancer imply that GAEC1 is commonly involved in the pathogenesis of colorectal adenocarcinoma.
Resumo:
Over the past decade, the mining industry has come to recognise the importance of water both to itself and to others. Water accounting is a formalisation of this importance that quantifies and communicates how water is used by individual sites and the industry as a whole. While there are a number of different accounting frameworks that could be used within the industry, the Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry-led approach that provides a consistent representation of mine site water interactions regardless of their operational, social or environmental context that allows for valid comparisons between sites and companies. The WAF contains definitions of offsite water sources and destinations and onsite water use, a methodology for applying the definitions and a set of metrics to measure site performance. The WAF is comprised of two models: the Input-Output Model, which represents the interactions between sites and their surrounding community and the Operational Model, which represents onsite water interactions. Members of the MCA have recently adopted the WAF’s Input-Output Model to report on their external water interactions in their Australian operations with some adopting it on a global basis. To support this adoption, there is a need for companies to better understand how to implement the WAF in their own operations. Developing a water account is non-trivial, particularly for sites unfamiliar with the WAF or for sites with the need to represent unusual features. This work describes how to build a water account for a given site using the Input-Output Model with an emphasis on how to represent challenging situations.
Resumo:
RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Resumo:
A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.