231 resultados para frequency notched antennas
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.
Resumo:
Soils at many locations that have their origin in volcanic parent material and have undergone extensive weathering often exhibit strong frequency-dependent magnetic susceptibilities. The presence of such susceptibility has a profound effect on electromagnetic induction data acquired in such environments. Their transient electromagnetic response is characterized by a t-1 decay that is strong enough to mask UXO responses. In a field study and associated laboratory work on characterizing the frequency-dependent magnetic susceptibility and its influence on transient electromagnetic data, we collected soil samples on the surface and in soil pits from the Island of Kaho'olawe, Hawaii, and measured their frequency dependent magnetic susceptibilities. We present the details of the field investigation, confirm previous theoretical work with field and laboratory measurements, characterize the susceptibility with a Cole-Cole model, and investigate the response specific to the measured susceptibility.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among them, CVTree method, feature frequency profiles method and dynamical language approach were used to investigate the whole-proteome phylogeny of large dsDNA viruses. Using the data set of large dsDNA viruses from Gao and Qi (BMC Evol. Biol. 2007), the phylogenetic results based on the CVTree method and the dynamical language approach were compared in Yu et al. (BMC Evol. Biol. 2010). In this paper, we first apply dynamical language approach to the data set of large dsDNA viruses from Wu et al. (Proc. Natl. Acad. Sci. USA 2009) and compare our phylogenetic results with those based on the feature frequency profiles method. Then we construct the whole-proteome phylogeny of the larger dataset combining the above two data sets. According to the report of The International Committee on the Taxonomy of Viruses (ICTV), the trees from our analyses are in good agreement to the latest classification of large dsDNA viruses.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound,Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Purpose To investigate the frequency of convergence and accommodation anomalies in an optometric clinical setting in Mashhad, Iran, and to determine tests with highest accuracy in diagnosing these anomalies. Methods From 261 patients who came to the optometric clinics of Mashhad University of Medical Sciences during a month, 83 of them were included in the study based on the inclusion criteria. Near point of convergence (NPC), near and distance heterophoria, monocular and binocular accommodative facility (MAF and BAF, respectively), lag of accommodation, positive and negative fusional vergences (PFV and NFV, respectively), AC/A ratio, relative accommodation, and amplitude of accommodation (AA) were measured to diagnose the convergence and accommodation anomalies. The results were also compared between symptomatic and asymptomatic patients. The accuracy of these tests was explored using sensitivity (S), specificity (Sp), and positive and negative likelihood ratios (LR+, LR−). Results Mean age of the patients was 21.3 ± 3.5 years and 14.5% of them had specific binocular and accommodative symptoms. Convergence and accommodative anomalies were found in 19.3% of the patients; accommodative excess (4.8%) and convergence insufficiency (3.6%) were the most common accommodative and convergence disorders, respectively. Symptomatic patients showed lower values for BAF (p = .003), MAF (p = .001), as well as AA (p = .001) compared with asymptomatic patients. Moreover, BAF (S = 75%, Sp = 62%) and MAF (S = 62%, Sp = 89%) were the most accurate tests for detecting accommodative and convergence disorders in terms of both sensitivity and specificity. Conclusions Convergence and accommodative anomalies are the most common binocular disorders in optometric patients. Including tests of monocular and binocular accommodative facility in routine eye examinations as accurate tests to diagnose these anomalies requires further investigation.
Resumo:
Map-matching algorithms that utilise road segment connectivity along with other data (i.e.position, speed and heading) in the process of map-matching are normally suitable for high frequency (1 Hz or higher) positioning data from GPS. While applying such map-matching algorithms to low frequency data (such as data from a fleet of private cars, buses or light duty vehicles or smartphones), the performance of these algorithms reduces to in the region of 70% in terms of correct link identification, especially in urban and sub-urban road networks. This level of performance may be insufficient for some real-time Intelligent Transport System (ITS) applications and services such as estimating link travel time and speed from low frequency GPS data. Therefore, this paper develops a new weight-based shortest path and vehicle trajectory aided map-matching (stMM) algorithm that enhances the map-matching of low frequency positioning data on a road map. The well-known A* search algorithm is employed to derive the shortest path between two points while taking into account both link connectivity and turn restrictions at junctions. In the developed stMM algorithm, two additional weights related to the shortest path and vehicle trajectory are considered: one shortest path-based weight is related to the distance along the shortest path and the distance along the vehicle trajectory, while the other is associated with the heading difference of the vehicle trajectory. The developed stMM algorithm is tested using a series of real-world datasets of varying frequencies (i.e. 1 s, 5 s, 30 s, 60 s sampling intervals). A high-accuracy integrated navigation system (a high-grade inertial navigation system and a carrier-phase GPS receiver) is used to measure the accuracy of the developed algorithm. The results suggest that the algorithm identifies 98.9% of the links correctly for every 30 s GPS data. Omitting the information from the shortest path and vehicle trajectory, the accuracy of the algorithm reduces to about 73% in terms of correct link identification. The algorithm can process on average 50 positioning fixes per second making it suitable for real-time ITS applications and services.
Resumo:
Recent studies have shown that ultrasound transit time spectroscopy (UTTS) is an alternative method to describe ultrasound wave propagation through complex samples as an array of parallel sonic rays. This technique has the potential to characterize bone properties including volume fraction and may be implemented in clinical systems to predict osteoporotic fracture risk. In contrast to broadband ultrasound attenuation, which is highly frequency dependent, we hypothesise that UTTS is frequency independent. This study measured 1 MHz and 5 MHz broadband ultrasound signals through a set of acrylic step-wedge samples. Digital deconvolution of the signals through water and each sample was applied to derive a transit time spectrum. The resulting spectra at both 1 MHz and 5 MHz were compared to the predicted transit time values. Linear regression analysis yields agreement (R2) of 99.23% and 99.74% at 1 MHz and 5 MHz respectively indicating frequency independence of transit time spectra.
Resumo:
This research examines the important emerging area of online customer experience (OCE) using data collected from an online survey of frequent and infrequent online shoppers. The study examines a model of antecedents for cognitive and affective experiential states and their influence on outcomes, such as online shopping satisfaction and repurchase intentions. The model also examines the relationships between perceived risk, trust, satisfaction and repurchase intentions. Theoretically, the study provides a broader understanding of OCE, through insights into two shopper segments identified as being important in e-retailing. For managers, the study highlights areas of OCE and their implications for ongoing management of the online channel.
Resumo:
Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.