317 resultados para fibre diameter measurement
Resumo:
Currently there are little objective parameters that can quantify the success of one form of prostate surgical removal over another. Accordingly, at Old Dominion University (ODU) we have been developing a process resulting in the use of software algorithms to assess the coverage and depth of extra-capsular soft tissue removed with the prostate by the various surgical approaches. Parameters such as the percent of capsule that is bare of soft tissue and where present the depth and extent of coverage have been assessed. First, visualization methods and tools are developed for images of prostate slices that are provided to ODU by the Pathology Department at Eastern Virginia Medical School (EVMS). The visualization tools interpolate and present 3D models of the prostates. Measurement algorithms are then applied to determine statistics about extra-capsular tissue coverage. This paper addresses the modeling, visualization, and analysis of prostate gland tissue to aid in quantifying prostate surgery success. Particular attention is directed towards the accuracy of these measurements and is addressed in the analysis discussions.
Resumo:
There are no population studies of prevalence or incidence of child maltreatment in Australia. Child protection data gives some understanding but is restricted by system capacity and definitional issues across jurisdictions. Child protection data currently suggests that numbers of reports are increasing yearly, and the child protection system then becomes focussed on investigating all reports and diluting available resources for those children who are most in need of intervention. A public health response across multiple agencies enables responses to child safety across the entire population. All families are targeted at the primary level; examples include ensuring all parents know the dangers of shaking a baby or teaching children to say no if a situation makes them uncomfortable. The secondary level of prevention targets families with a number of risk factors, for example subsidised child care so children aren't left unsupervised after school when both parents have to be at work or home visiting for drug-addicted parents to ensure children are cared for. The tertiary response then becomes the responsibility of the child protection system and is reserved for those children where abuse and neglect are identified. This model requires that child safety is seen in a broader context than just the child protection system, and increasingly health professionals are being identified as an important component in the public health framework. If all injury is viewed as preventable and considered along a continuum of 'accidental' through to 'inflicted', it becomes possible to conceptualise child maltreatment in an injury context. Parental intent may not be to cause harm to the child, but by lack of insight or concern about risk, the potential for injury is high. The mechanisms for unintentional and intentional injury overlap and some suggest that by segregating child abuse (with the possible exception of sexual abuse) from unintentional injury, child abuse is excluded from the broader injury prevention initiative that is gaining momentum in the community. This research uses a public health perspective, specifically that of injury prevention, to consider the problem of child abuse. This study employed a mixed method design that incorporates secondary data analysis, data linkage and structured interviews of different professional groups. Datasets from the Queensland Injury Surveillance Unit (QISU) and The Department of Child Safety (DCS) were evaluated. Coded injury data was grouped according to intent of injury according to those with a code that indicated the ED presentation was due to child abuse, a code indicating that the injury was possibly due to abuse or, in the third group, the intent code indicated that the injury was unintentional and not due to abuse. Primary data collection from ED records was undertaken and information recoded to assess reliability and completeness. Emergency department data (QISU) was linked to Department of Child Safety Data to examine concordance and data quality. Factors influencing the collection and collation of these data were identified through structured interview methodology and analysed using qualitative methods. Secondary analysis of QISU data indicated that codes lacking specific information on the injury event were more likely to also have an intent code indicating abuse than those records where there was specific information on the injury event. Codes for abuse appeared in only 1.2% of the 84,765 records analysed. Unintentional injury was the most commonly coded intent (95.3%). In the group with a definite abuse code assigned at triage, 83% linked to a record with DCS and cases where documentation indicated police involvement were significantly more likely to be associated with a DCS record than those without such documentation. In those coded with an unintentional injury code, 22% linked to a DCS record with cases assigned an urgent triage category more likely to link than those with a triage category for resuscitation and children who presented to regional or remote hospitals more likely to link to a DCS record than those presenting to urban hospitals. Twenty-nine per cent of cases with a code indicating possible abuse linked to a DCS record. In documentation that indicated police involvement in the case, a code for unspecified activity when compared to cases with a code indicating involvement in a sporting activity and children less than 12 months of age compared to those in the 13-17 year old age group were all variables significantly associated with linkage to a DCS record. Only 13% of records contained documentation indicating that child abuse and neglect were considered in the diagnosis of the injury despite almost half of the sample having a code of abuse or possible abuse. Doctors and nurses were confident in their knowledge of the process of reporting child maltreatment but less confident about identifying child abuse and neglect and what should be reported. Many were concerned about implications of reporting, for the child and family and for themselves. A number were concerned about the implications of not reporting, mostly for the wellbeing of the child and a few in terms of their legal obligations as mandatory reporters. The outcomes of this research will help improve the knowledge of barriers to effective surveillance of child abuse in emergency departments. This will, in turn, ensure better identification and reporting practises; more reliable official statistical collections and the potential of flagging high-risk cases to ensure adequate departmental responses have been initiated.
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.
Resumo:
In developed countries the relationship between socioeconomic position (SEP) and health is unequivocal. Those who are socioeconomically disadvantaged are known to experience higher morbidity and mortality from a range of chronic diet-related conditions compared to those of higher SEP. Socioeconomic inequalities in diet are well established. Compared to their more advantaged counterparts, those of low SEP are consistently found to consume diets less consistent with dietary guidelines (i.e. higher in fat, salt and sugar and lower in fibre, fruit and vegetables). Although the reasons for dietary inequalities remain unclear, understanding how such differences arise is important for the development of strategies to reduce health inequalities. Both environmental (e.g. proximity of supermarkets, price, and availability of foods) and psychosocial (e.g. taste preference, nutrition knowledge) influences are proposed to account for inequalities in food choices. Although in the United States (US), United Kingdom (UK), and parts of Australia, environmental factors are associated with socioeconomic differences in food choices, these factors do not completely account for the observed inequalities. Internationally, this context has prompted calls for further exploration of the role of psychological and social factors in relation to inequalities in food choices. It is this task that forms the primary goal of this PhD research. In the small body of research examining the contribution of psychosocial factors to inequalities in food choices, studies have focussed on food cost concerns, nutrition knowledge or health concerns. These factors are generally found to be influential. However, since a range of psychosocial factors are known determinants of food choices in the general population, it is likely that a range of factors also contribute to inequalities in food choices. Identification of additional psychosocial factors of relevance to inequalities in food choices would provide new opportunities for health promotion, including the adaption of existing strategies. The methodological features of previous research have also hindered the advancement of knowledge in this area and a lack of qualitative studies has resulted in a dearth of descriptive information on this topic. This PhD investigation extends previous research by assessing a range of psychosocial factors in relation to inequalities in food choices using both quantitative and qualitative techniques. Secondary data analyses were undertaken using data obtained from two Brisbane-based studies, the Brisbane Food Study (N=1003, conducted in 2000), and the Sixty Families Study (N=60, conducted in 1998). Both studies involved main household food purchasers completing an interviewer-administered survey within their own home. Data pertaining to food-purchasing, and psychosocial, socioeconomic and demographic characteristics were collected in each study. The mutual goals of both the qualitative and quantitative phases of this investigation were to assess socioeconomic differences in food purchasing and to identify psychosocial factors relevant to any observed differences. The quantitative methods then additionally considered whether the associations examined differed according to the socioeconomic indicator used (i.e. income or education). The qualitative analyses made a unique contribution to this project by generating detailed descriptions of socioeconomic differences in psychosocial factors. Those with lower levels of income and education were found to make food purchasing choices less consistent with dietary guidelines compared to those of high SEP. The psychosocial factors identified as relevant to food-purchasing inequalities were: taste preferences, health concerns, health beliefs, nutrition knowledge, nutrition concerns, weight concerns, nutrition label use, and several other values and beliefs unique to particular socioeconomic groups. Factors more tenuously or inconsistently related to socioeconomic differences in food purchasing were cost concerns, and perceived adequacy of the family diet. Evidence was displayed in both the quantitative and qualitative analyses to suggest that psychosocial factors contribute to inequalities in food purchasing in a collective manner. The quantitative analyses revealed that considerable overlap in the socioeconomic variation in food purchasing was accounted for by key psychosocial factors of importance, including taste preference, nutrition concerns, nutrition knowledge, and health concerns. Consistent with these findings, the qualitative transcripts demonstrated the interplay between such influential psychosocial factors in determining food-purchasing choices. The qualitative analyses found socioeconomic differences in the prioritisation of psychosocial factors in relation to food choices. This is suggestive of complex cultural factors that distinguish advantaged and disadvantaged groups and result in socioeconomically distinct schemas related to health and food choices. Compared to those of high SEP, those of lower SEP were less likely to indicate that health concerns, nutrition concerns, or food labels influenced food choices, and exhibited lower levels of nutrition knowledge. In the absence of health or nutrition-related concerns, taste preferences tended to dominate the food purchasing choices of those of low SEP. Overall, while cost concerns did not appear to be a main determinant of socioeconomic differences in food purchasing, this factor had a dominant influence on the food choices of some of the most disadvantaged respondents included in this research. The findings of this study have several implications for health promotion. The integrated operation of psychosocial factors on food purchasing inequalities indicates that multiple psychosocial factors may be appropriate to target in health promotion. It also seems possible that the inter-relatedness of psychosocial factors would allow health promotion targeting a single psychosocial factor to have a flow-on affect in terms of altering other influential psychosocial factors. This research also suggests that current mass marketing approaches to health promotion may not be effective across all socioeconomic groups due to differences in the priorities and main factors of influence in food purchasing decisions across groups. In addition to the practical recommendations for health promotion, this investigation, through the critique of previous research, and through the substantive study findings, has highlighted important methodological considerations for future research. Of particular note are the recommendations pertaining to the selection of socioeconomic indicators, measurement of relevant constructs, consideration of confounders, and development of an analytical approach. Addressing inequalities in health has been noted as a main objective by many health authorities and governments internationally. It is envisaged that the substantive and methodological findings of this thesis will make a useful contribution towards this important goal.
Resumo:
In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
The development of user expertise is a strategic imperative for organizations in hyper-competitive markets. This paper conceptualizes opreationalises and validates user expertise in contemporary Information Systems (IS) as a formative, multidimensional index. Such a validated and widely accepted index would facilitate progression of past research on user competence and efficacy of IS to complex contemporary IS, while at the same time providing a benchmark for organizations to track their user expertise. The validation involved three separate studies, including exploratory and confirmatory phases, using data from 244 respondents.
Resumo:
This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.
Resumo:
BACKGROUND: Conjunctival ultraviolet autofluorescence (UVAF) photography was developed to detect and characterise pre-clinical sunlight-induced UV damage. The reliability of this measurement and its relationship to outdoor activity are currently unknown. METHODS: 599 people aged 16-85 years in the cross-sectional Norfolk Island Eye Study were included in the validation study. 196 UVAF individual photographs (49 people) and 60 UVAF photographs (15 people) of Norfolk Island Eye Study participants were used for intra- and inter-observer reliability assessment, respectively. Conjunctival UVAF was measured using UV photography. UVAF area was calculated using computerised methods by one grader on two occasions (intra-observer analysis) or two graders (inter-observer analysis). Outdoor activity category, during summer and winter separately, was determined with a UV questionnaire. Total UVAF equalled the area measured in four conjunctival areas (nasal/temporal conjunctiva of right and left eyes). RESULTS: Intra-observer (ρ_c=0.988, 95% CI 0.967 to 0.996, p<0.001), and inter-observer concordance correlation coefficients (ρ_c=0.924, 95% CI 0.870 to 0.956, p<0.001) of total UVAF exceeded 0.900. When grouped according to 10 mm(2) total UVAF increments, intra- and inter-observer reliability was very good (κ=0.81) and good (κ=0.71), respectively. Increasing time outdoors was strongly with increasing total UVAF in summer and winter (p(trend) <0.001). CONCLUSION: Intra- and inter-observer reliability of conjunctival UVAF is high. In this population, UVAF correlates strongly with the authors' survey-based assessment of time spent outdoors.
Resumo:
The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.
Resumo:
The overall aim of our research was to characterize airborne particles from selected nanotechnology processes and to utilize the data to develop and test quantitative particle concentration-based criteria that can be used to trigger an assessment of particle emission controls. We investigated particle number concentration (PNC), particle mass (PM) concentration, count median diameter (CMD), alveolar deposited surface area, elemental composition, and morphology from sampling of aerosols arising from six nanotechnology processes. These included fibrous and non-fibrous particles, including carbon nanotubes (CNTs). We adopted standard occupational hygiene principles in relation to controlling peak emission and exposures, as outlined by both Safe Work Australia, (1) and the American Conference of Governmental Industrial Hygienists (ACGIH®). (2) The results from the study were used to analyses peak and 30-minute averaged particle number and mass concentration values measured during the operation of the nanotechnology processes. Analysis of peak (highest value recorded) and 30-minute averaged particle number and mass concentration values revealed: Peak PNC20–1000 nm emitted from the nanotechnology processes were up to three orders of magnitude greater than the local background particle concentration (LBPC). Peak PNC300–3000 nm was up to an order of magnitude greater, and PM2.5 concentrations up to four orders of magnitude greater. For three of these nanotechnology processes, the 30-minute average particle number and mass concentrations were also significantly different from the LBPC (p-value < 0.001). We propose emission or exposure controls may need to be implemented or modified, or further assessment of the controls be undertaken, if concentrations exceed three times the LBPC, which is also used as the local particle reference value, for more than a total of 30 minutes during a workday, and/or if a single short-term measurement exceeds five times the local particle reference value. The use of these quantitative criteria, which we are terming the universal excursion guidance criteria, will account for the typical variation in LBPC and inaccuracy of instruments, while precautionary enough to highlight peaks in particle concentration likely to be associated with particle emission from the nanotechnology process. Recommendations on when to utilize local excursion guidance criteria are also provided.
Resumo:
A nanoparticles size is one of their key physical characteristics that can affect their fate in a human’s respiratory tract (in case of inhalation) and also in the environment. Hence, measuring the size distribution of nanoparticles is absolutely essential and contributes greatly to their characterization. For years, Scanning Mobility Particle Sizers (SMPS), which rely on measuring the electrical mobility diameter of particles, have been used as one of the most reliable real-time instruments for the size distribution measurement of nanoparticles. Despite its benefits, this instrument has some drawbacks, including equivalency problems for non-spherical particles (i.e. assuming a non-spherical particle is equal to a spherical particle of diameter d due to the same electrical mobility), as well as limitations in terms of its use in workplaces, because of its large size and the complexity of its operation...
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.