264 resultados para connective tissue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objectives Laser tissue repair usually relies on hemoderivate protein solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited tensile strength of repaired tissue, poor solder solubility, and brittleness prior to laser denaturation. Furthermore, the required activation temperature of albumin solders (between 65 and 70°C) can induce significant thermal damage to tissue. In this study, we report on the design of a new polysaccharide adhesive for tissue repair that overcomes some of the shortcomings of traditional solders. Study Design/Materials and Methods Flexible and insoluble strips of chitosan adhesive (elastic modulus ~6.8 Mpa, surface area ~34 mm2, thickness ~20 µm) were bonded onto rectangular sections of sheep intestine using a diode laser (continuous mode, 120 ± 10 mW, = λ 808 nm) through a multimode optical fiber with an irradiance of ~15 W/cm2. The adhesive was based on chitosan and also included indocyanin green dye (IG). The temperature between tissue and adhesive was measured using a small thermocouple (diameter ~0.25 mm) during laser irradiation. The repaired tissue was tested for tensile strength by a calibrated tensiometer. Murine fibroblasts were cultured in extracted media from chitosan adhesive to assess cytotoxicity via cell growth inhibition in a 48 hours period. Results Chitosan adhesive successfully repaired intestine tissue, achieving a tensile strength of 14.7 ± 4.7 kPa (mean ± SD, n = 30) at a temperature of 60-65°C. Media extracted from chitosan adhesive showed negligible toxicity to fibroblast cells under the culture conditions examined here. Conclusion A novel chitosan-based adhesive has been developed, which is insoluble, flexible, and adheres firmly to tissue upon infrared laser activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human kallikrein-related peptidases are a subgroup of trypsin and chymotrypsin-like serine peptidases that are characterized by their homology to tissue kallikrein or kallikrein 1 (KLK1) encoded by the KLK1 gene (reviewed in[1-4]). The human KLK locus spans an approximately 320 kb region on chromosome 19q13.3-13.4 and contains fifteen genes encoding KLK1 and fourteen other kallikrein-related peptidases, KLK2-KLK15, which have been named contiguously in the locus in the order of their discovery [5-8] (Figure 606.1). It is the largest contiguous cluster of serine protease encoding genes in the human genome which has evolved from gene duplication of KLK1 and then subsequent reduplication of the newly evolved KLK genes [2]. The high conservation noted for KLK1-KLK3 (62-77%) reflects the proposed duplication of the KLK1 gene that produced the KLK2 gene which further generated the KLK3 gene. In contrast, the newer KLK4-KLK15 proteases share much less similarity, from 24-66%, although strong homology between KLK4 and KLK5, KLK9 and KLK11, and KLK10 and KLK12 suggests these genes are duplications of each other [2]...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there are little objective parameters that can quantify the success of one form of prostate surgical removal over another. Accordingly, at Old Dominion University (ODU) we have been developing a process resulting in the use of software algorithms to assess the coverage and depth of extra-capsular soft tissue removed with the prostate by the various surgical approaches. Parameters such as the percent of capsule that is bare of soft tissue and where present the depth and extent of coverage have been assessed. First, visualization methods and tools are developed for images of prostate slices that are provided to ODU by the Pathology Department at Eastern Virginia Medical School (EVMS). The visualization tools interpolate and present 3D models of the prostates. Measurement algorithms are then applied to determine statistics about extra-capsular tissue coverage. This paper addresses the modeling, visualization, and analysis of prostate gland tissue to aid in quantifying prostate surgery success. Particular attention is directed towards the accuracy of these measurements and is addressed in the analysis discussions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The texture of agricultural crops changes during harvesting, post harvesting and processing stages due to different loading processes. There are different source of loading that deform agricultural crop tissues and these include impact, compression, and tension. Scanning Electron Microscope (SEM) method is a common way of analysing cellular changes of materials before and after these loading operations. This paper examines the structural changes of pumpkin peel and flesh tissues under mechanical loading. Compression and indentation tests were performed on peel and flesh samples. Samples structure were then fixed and dehydrated in order to capture the cellular changes under SEM. The results were compared with the images of normal peel and flesh tissues. The findings suggest that normal flesh tissue had bigger size cells, while the cellular arrangement of peel was smaller. Structural damage was clearly observed in tissue structure after compression and indentation. However, the damages that resulted from the flat end indenter was much more severe than that from the spherical end indenter and compression test. An integrated deformed tissue layer was observed in compressed tissue, while the indentation tests shaped a deformed area under the indenter and left the rest of the tissue unharmed. There was an obvious broken layer of cells on the walls of the hole after the flat end indentations, whereas the spherical indenter created a squashed layer all around the hole. Furthermore, the influence of loading was lower on peel samples in comparison with the flesh samples. The experiments have shown that the rate of damage on tissue under constant rate of loading is highly dependent on the shape of equipment. This fact and observed structural changes after loading underline the significance of deigning post harvesting equipments to reduce the rate of damage on agricultural crop tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, three mathematical models describing the growth of solid tumour incorporating the host tissue and the immune system response are developed and investigated. The initial model describes the dynamics of the growing tumour and immune response before being extended in the second model by introducing a time-varying dendritic cell-based treatment strategy. Finally, in the third model, we present a mathematical model of a growing tumour using a hybrid cellular automata. These models can provide information to pre-experimental work to assist in designing more effective and efficient laboratory experiments related to tumour growth and interactions with the immune system and immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix (ECM), has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physico-chemical properties of scaffolds including tensile strength, swelling behavior and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices′ cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent (HSE) wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization — a pre-requisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Achieving soft tissue balance is an operative goal in total knee arthroplasty. This randomised, prospective study compared computer navigation to conventional techniques in achieving soft tissue balance. Methods: Forty one consecutive knee arthroplasties were randomised to either a non-navigated or navigated group. In the non-navigated group, balancing was carried out using surgeon judgement. In the navigated group, balancing was carried out using navigation software. In both groups, the navigation software was used as a measuring tool. Results: Balancing of the mediolateral extension gap was superior in the navigation group (p=0.001). No significant difference was found between the two groups in balancing the mediolateral flexion gap or in achieving equal flexion and extension gaps. Conclusions: Computer navigation offered little advantage over experienced surgeon judgement in achieving soft tissue balance in knee replacement. However, the method employed in the navigated group did provide a reproducible and objective assessment of flexion and extension gaps and may therefore benefit surgeons in training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gelatin-methacrylamide (gelMA) hydrogels are shown to support chondrocyte viability and differentiation and give wide ranging mechanical properties depending on several cross-linking parameters. Polymer concentration, UV exposure time, and thermal gelation prior to UV exposure allow for control over hydrogel stiffness and swelling properties. GelMA solutions have a low viscosity at 37 °C, which is incompatible with most biofabrication approaches. However, incorporation of hyaluronic acid (HA) and/or co-deposition with thermoplastics allows gelMA to be used in biofabrication processes. These attributes may allow engineered constructs to match the natural functional variations in cartilage mechanical and geometrical properties.