321 resultados para Visual perception.
Resumo:
The purpose of this study is to contribute to the cross-disciplinary body of literature of identity and organisational culture. This study empirically investigated the Hatch and Schultz (2002) Organisational Identity Dynamics (OID) model to look at linkages between identity, image, and organisational culture. This study used processes defined in the OID model as a theoretical frame by which to understand the relationships between actual and espoused identity manifestations across visual identity, corporate identity, and organisational identity. The linking processes of impressing, mirroring, reflecting, and expressing were discussed at three unique levels in the organisation. The overarching research question of How does the organisational identity dynamics process manifest itself in practice at different levels within an organisation? was used as a means of providing empirical understanding to the previously theoretical OID model. Case study analysis was utilised to provide exploratory data across the organisational groups of: Level A - Senior Marketing and Corporate Communications Management, Level B - Marketing and Corporate Communications Staff, and Level C - Non-Marketing Managers and Employees. Data was collected via 15 in-depth interviews with documentary analysis used as a supporting mechanism to provide triangulation in analysis. Data was analysed against the impressing, mirroring, reflecting, and expressing constructs with specific criteria developed from literature to provide a detailed analysis of each process. Conclusions revealed marked differences in the ways in which OID processes occurred across different levels with implications for the ways in which VI, CI, and OI interact to develop holistic identity across organisational levels. Implications for theory detail the need to understand and utilise cultural understanding in identity programs as well as the value in developing identity communications which represent an actual rather than an espoused position.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Hazard perception in driving involves a number of different processes. This paper reports the development of two measures designed to separate these processes. A Hazard Perception Test was developed to measure how quickly drivers could anticipate hazards overall, incorporating detection, trajectory prediction, and hazard classification judgements. A Hazard Change Detection Task was developed to measure how quickly drivers can detect a hazard in a static image regardless of whether they consider it hazardous or not. For the Hazard Perception Test, young novices were slower than mid-age experienced drivers, consistent with differences in crash risk, and test performance correlated with scores in pre-existing Hazard Perception Tests. For drivers aged 65 and over, scores on the Hazard Perception Test declined with age and correlated with both contrast sensitivity and a Useful Field of View measure. For the Hazard Change Detection Task, novices responded quicker than the experienced drivers, contrary to crash risk trends, and test performance did not correlate with measures of overall hazard perception. However for drivers aged 65 and over, test performance declined with age and correlated with both hazard perception and Useful Field of View. Overall we concluded that there was support for the validity of the Hazard Perception Test for all ages but the Hazard Change Detection Task might only be appropriate for use with older drivers.
Resumo:
OBJECTIVES: To investigate the effects of hearing impairment and distractibility on older people's driving ability, assessed under real-world conditions. DESIGN: Experimental cross-sectional study. SETTING: University laboratory setting and an on-road driving test. PARTICIPANTS: One hundred seven community-living adults aged 62 to 88. Fifty-five percent had normal hearing, 26% had a mild hearing impairment, and 19% had a moderate or greater impairment. ---------- MEASUREMENTS: Hearing was assessed using objective impairment measures (pure-tone audiometry, speech perception testing) and a self-report measure (Hearing Handicap Inventory for the Elderly). Driving was assessed on a closed road circuit under three conditions: no distracters, auditory distracters, and visual distracters. RESULTS: There was a significant interaction between hearing impairment and distracters, such that people with moderate to severe hearing impairment had significantly poorer driving performance in the presence of distracters than those with normal or mild hearing impairment. CONCLUSION: Older adults with poor hearing have greater difficulty with driving in the presence of distracters than older adults with good hearing.
Resumo:
The importance of constructively aligned curriculum is well understood in higher education. Based on the principles of constructive alignment, this research considers whether student perception of learning achievement measures can be used to gain insights into how course activities and pedagogy are assisting or hindering students in accomplishing course learning goals. Students in a Marketing Principles course were asked to complete a voluntary survey rating their own progress on the intended learning goals for the course. Student perceptions of learning achievement were correlated with actual student learning, as measured by grade, suggesting that student perceptions of learning achievement measures are suitable for higher educators. Student perception of learning achievement measures provide an alternate means to understand whether students are learning what was intended, which is particularly useful for educators faced with large classes and associated restrictions on assessment. Further, these measures enable educators to simultaneously gather evidence to document the impact of teaching innovations on student learning. Further implications for faculty and future research are offered.
Resumo:
Purpose. To investigate evidence-based visual field size criteria for referral of low-vision (LV) patients for mobility rehabilitation. Methods. One hundred and nine participants with LV and 41 age-matched participants with normal sight (NS) were recruited. The LV group was heterogeneous with diverse causes of visual impairment. We measured binocular kinetic visual fields with the Humphrey Field Analyzer and mobility performance on an obstacle-rich, indoor course. Mobility was assessed as percent preferred walking speed (PPWS) and number of obstacle-contact errors. The weighted kappa coefficient of association (κr) was used to discriminate LV participants with both unsafe and inefficient mobility from those with adequate mobility on the basis of their visual field size for the full sample and for subgroups according to type of visual field loss and whether or not the participants had previously received orientation and mobility training. Results. LV participants with both PPWS <38% and errors >6 on our course were classified as having inadequate (inefficient and unsafe) mobility compared with NS participants. Mobility appeared to be first compromised when the visual field was less than about 1.2 steradians (sr; solid angle of a circular visual field of about 70° diameter). Visual fields <0.23 and 0.63 sr (31 to 52° diameter) discriminated patients with at-risk mobility for the full sample and across the two subgroups. A visual field of 0.05 sr (15° diameter) discriminated those with critical mobility. Conclusions. Our study suggests that: practitioners should be alert to potential mobility difficulties when the visual field is less than about 1.2 sr (70° diameter); assessment for mobility rehabilitation may be warranted when the visual field is constricted to about 0.23 to 0.63 sr (31 to 52° diameter) depending on the nature of their visual field loss and previous history (at risk); and mobility rehabilitation should be conducted before the visual field is constricted to 0.05 sr (15° diameter; critical).
Resumo:
Background: This study investigated the effects of experimentally induced visual impairment, headlamp glare and clothing on pedestrian visibility. Methods: 28 young adults (M=27.6±4.7 yrs) drove around a closed road circuit at night while pedestrians walked in place at the roadside. Pedestrians wore either black clothing, black clothing with a rectangular vest consisting of 1325 cm2 of retroreflective tape, or the same amount of tape positioned on the extremities in a configuration that conveyed biological motion (“biomotion”). Visual impairment was induced by goggles containing either blurring lenses, simulated cataracts, or clear lenses; visual acuity for the cataract and blurred lens conditions was matched. Drivers pressed a response pad when they first recognized that a pedestrian was present. Sixteen participants drove around the circuit in the presence of headlamp glare while twelve drove without glare. Results: Visual impairment, headlamp glare and pedestrian clothing all significantly affected drivers’ ability to recognize pedestrians (p<0.05). The simulated cataracts were more disruptive than blur, even though acuity was matched across the two manipulations. Pedestrians were recognized more often and at longer distances when they wore “biomotion” clothing than either the vest or black clothing, even in the presence of visual impairment and glare. Conclusions: Drivers’ ability to see and respond to pedestrians at night is degraded by modest visual impairments even when vision meets driver licensing requirements; glare further exacerbates these effects. Clothing that includes retroreflective tape in a biological motion configuration is relatively robust to visual impairment and glare.
Resumo:
PURPOSE: To investigate the impact of different levels of simulated visual impairment on the cognitive test performance of older adults and to compare this with previous findings in younger adults. METHODS.: Cognitive performance was assessed in 30 visually normal, community-dwelling older adults (mean = 70.2 ± 3.9 years). Four standard cognitive tests were used including the Digit Symbol Substitution Test, Trail Making Tests A and B, and the Stroop Color Word Test under three visual conditions: normal baseline vision and two levels of cataract simulating filters (Vistech), which were administered in a random order. Distance high-contrast visual acuity and Pelli-Robson letter contrast sensitivity were also assessed for all three visual conditions. RESULTS.: Simulated cataract significantly impaired performance across all cognitive test performance measures. In addition, the impact of simulated cataract was significantly greater in this older cohort than in a younger cohort previously investigated. Individual differences in contrast sensitivity better predicted cognitive test performance than did visual acuity. CONCLUSIONS.: Visual impairment can lead to slowing of cognitive performance in older adults; these effects are greater than those observed in younger participants. This has important implications for neuropsychological testing of older populations who have a high prevalence of cataract.
Resumo:
Background: Assessments of change in subjective patient reported outcomes such as health-related quality of life (HRQoL) are a key component of many clinical and research evaluations. However, conventional longitudinal evaluation of change may not agree with patient perceived change if patients' understanding of the subjective construct under evaluation changes over time (response shift) or if patients' have inaccurate recollection (recall bias). This study examined whether older adults' perception of change is in agreement with conventional longitudinal evaluation of change in their HRQoL over the duration of their hospital stay. It also investigated this level of agreement after adjusting patient perceived change for recall bias that patients may have experienced. Methods: A prospective longitudinal cohort design nested within a larger randomised controlled trial was implemented. 103 hospitalised older adults participated in this investigation at a tertiary hospital facility. The EQ-5D utility and Visual Analogue Scale (VAS) scores were used to evaluate HRQoL. Participants completed EQ-5D reports as soon as they were medically stable (within three days of admission) then again immediately prior to discharge. Three methods of change score calculation were used (conventional change, patient perceived change and patient perceived change adjusted for recall bias). Agreement was primarily investigated using intraclass correlation coefficients (ICC) and limits of agreement. Results: Overall 101 (98%) participants completed both admission and discharge assessments. The mean (SD) age was 73.3 (11.2). The median (IQR) length of stay was 38 (20-60) days. For agreement between conventional longitudinal change and patient perceived change: ICCs were 0.34 and 0.40 for EQ-5D utility and VAS respectively. For agreement between conventional longitudinal change and patient perceived change adjusted for recall bias: ICCs were 0.98 and 0.90 respectively. Discrepancy between conventional longitudinal change and patient perceived change was considered clinically meaningful for 84 (83.2%) of participants, after adjusting for recall bias this reduced to 8 (7.9%). Conclusions: Agreement between conventional change and patient perceived change was not strong. A large proportion of this disagreement could be attributed to recall bias. To overcome the invalidating effect of response shift (on conventional change) and recall bias (on patient perceived change) a method of adjusting patient perceived change for recall bias has been described.
Resumo:
In this paper I analyse UK artist Alison Jones’ sonic interventions Portrait of the Artist by Proxy (2008), Voyeurism by Proxy (2008) and Art, Lies and Audio Tapes (2009). In Portrait of the Artist by Proxy, Jones – who, due to deteriorating vision, has not seen her reflection in a mirror in years – asks and trusts participants to audio-describe her own image back to her. In Voyeurism by Proxy, Jones asks participants to audio-describe erotic drawings by Gustav Klimt. In Art, Lies and Audio Tapes, Jones asks participants to audio-describe other artworks, such as W.F. Yeames’ And When Did You Last see Your Father?. In these portraits by proxy, Jones opens her image, and other images, to interpretation. In doing so, Jones draws attention to the way sight is privileged as a mode of access to fixed, fundamental truths in Western culture – a mode assumed to be untainted by filters that skew perception of the object. “In a culture where vision is by far the dominant sense,” Jones says, “and as a visual artist with a visual impairment, I am reliant on audio-description …Inevitably, there are limitations imposed by language, time and the interpreter’s background knowledge of the subject viewed, as well as their personal bias of what is deemed important to impart in their description” . In these works, Jones strips these background knowledges, biases and assumptions bare. She reveals different perceptions, as well as tendencies or censor, edit or exaggerate descriptions. In this paper, I investigate how, by revealing unconscious biases, Jones’ works renders herself and her participants vulnerable to a change of perception. I also examine how Jones’ later editing of the audio-descriptions allows her to show the instabilities of sight, and, in Portrait of the Artist by Proxy, to reclaim authorship of her own image.
Resumo:
Interacting with technology within a vehicle environment using a voice interface can greatly reduce the effects of driver distraction. Most current approaches to this problem only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to circumvent this is to use the visual modality in addition. However, capturing, storing and distributing audio-visual data in a vehicle environment is very costly and difficult. One current dataset available for such research is the AVICAR [1] database. Unfortunately this database is largely unusable due to timing mismatch between the two streams and in addition, no protocol is available. We have overcome this problem by re-synchronising the streams on the phone-number portion of the dataset and established a protocol for further research. This paper presents the first audio-visual results on this dataset for speaker-independent speech recognition. We hope this will serve as a catalyst for future research in this area.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
It is possible for the visual attention characteristics of a person to be exploited as a biometric for authentication or identification of individual viewers. The visual attention characteristics of a person can be easily monitored by tracking the gaze of a viewer during the presentation of a known or unknown visual scene. The positions and sequences of gaze locations during viewing may be determined by overt (conscious) or covert (sub-conscious) viewing behaviour. This paper presents a method to authenticate individuals using their covert viewing behaviour, thus yielding a unique behavioural biometric. A method to quantify the spatial and temporal patterns established by the viewer for their covert behaviour is proposed utilsing a principal component analysis technique called `eigenGaze'. Experimental results suggest that it is possible to capture the unique visual attention characteristics of a person to provide a simple behavioural biometric.
Resumo:
Detection of Region of Interest (ROI) in a video leads to more efficient utilization of bandwidth. This is because any ROIs in a given frame can be encoded in higher quality than the rest of that frame, with little or no degradation of quality from the perception of the viewers. Consequently, it is not necessary to uniformly encode the whole video in high quality. One approach to determine ROIs is to use saliency detectors to locate salient regions. This paper proposes a methodology for obtaining ground truth saliency maps to measure the effectiveness of ROI detection by considering the role of user experience during the labelling process of such maps. User perceptions can be captured and incorporated into the definition of salience in a particular video, taking advantage of human visual recall within a given context. Experiments with two state-of-the-art saliency detectors validate the effectiveness of this approach to validating visual saliency in video. This paper will provide the relevant datasets associated with the experiments.
Resumo:
Gaze and movement behaviors of association football goalkeepers were compared under two video simulation conditions (i.e., verbal and joystick movement responses) and three in situ conditions (i.e., verbal, simplified body movement, and interceptive response). The results showed that the goalkeepers spent more time fixating on information from the penalty kick taker’s movements than ball location for all perceptual judgment conditions involving limited movement (i.e., verbal responses, joystick movement, and simplified body movement). In contrast, an equivalent amount of time was spent fixating on the penalty taker’s relative motions and the ball location for the in situ interception condition, which required the goalkeepers to attempt to make penalty saves. The data suggest that gaze and movement behaviors function differently, depending on the experimental task constraints selected for empirical investigations. These findings highlight the need for research on perceptual— motor behaviors to be conducted in representative experimental conditions to allow appropriate generalization of conclusions to performance environments.