243 resultados para Underwater acoustics
Resumo:
Urban road traffic noise in cities is an ongoing and increasing problem across much of the world. Consequently a large amount of effort is expended in attempts to address this problem, especially in the area of acoustic design of buildings. Acoustic design policies developed by government authorities will typically focus on required transport noise reductions through a building façade to meet a specified internal noise levels. The significance of balcony acoustic treatments has been highlighted in recent decades yet this area has potentially been considered less important than the need for acoustic isolation of building facades. This paper outlines recent research that has been conducted in determining the significance of balcony acoustic treatments in mitigating urban road traffic noise. It summarizes recent literature, some of which focuses on technological advances in the knowledge of balcony acoustic design and some literature discusses the overall aims and benefits of balcony acoustic design. The aim of this paper is to promote the use of balcony acoustic design as a significant element in the overall solution towards mitigating road traffic noise in modern cities.
Resumo:
Balcony acoustic treatments can mitigate the effects of community road traffic noise. To further investigate, a theoretical study into the effects of balcony acoustic treatment combinations on speech interference and transmission is conducted for various street geometries. Nine different balcony types are investigated using a combined specular and diffuse reflection computer model. Diffusion in the model is calculated using the radiosity technique. The balcony types include a standard balcony with or without a ceiling and with various combinations of parapet, ceiling absorption and ceiling shield. A total of 70 balcony and street geometrical configurations are analyzed with each balcony type, resulting in 630 scenarios. In each scenario the reverberation time, speech interference level (SIL) and speech transmission index (STI) are calculated. These indicators are compared to determine trends based on the effects of propagation path, inclusion of opposite buildings and difference with a reference position outside the balcony. The results demonstrate trends in SIL and STI with different balcony types. It is found that an acoustically treated balcony reduces speech interference. A parapet provides the largest improvement, followed by absorption on the ceiling. The largest reductions in speech interference arise when a combination of balcony acoustic treatments are applied.
Resumo:
The work described in this technical report is part of an ongoing project to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the methods we use to remove background noise from spectrograms. It updates techniques previously described in Towsey and Planitz (2011), Technical report: acoustic analysis of the natural environment, downloadable from: http://eprints.qut.edu.au/41131/. It also describes noise removal from wave-forms, a technique not described in the above 2011 technical report.
Resumo:
Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.
Resumo:
Daylight devices are important components of any climate responsive façade system. But, the evolution of parametric CAD systems and digital fabrication has had an impact on architectural form so that regular forms are shifting to complex geometries. Architectural and engineering integration of daylight devices in envelopes with complex geometries is a challenge in terms of design and performance evaluation. The purpose of this paper is to assess daylight performance of a building with a climatic responsive envelope with complex geometry that integrates shading devices in the façade. The case study is based on the Esplanade buildings in Singapore. Climate-based day-light metrics such as Daylight Availability and Useful Daylight Illuminance are used. DIVA (daylight simulation), and Grasshopper (parametric analysis) plug-ins for Rhinoceros have been employed to examine the range of performance possibilities. Parameters such as dimension, inclination of the device, projected shadows and shape have been changed in order to maximize daylight availability and Useful Daylight Illuminance while minimizing glare probability. While orientation did not have a great impact on the results, aperture of the shading devices did, showing that shading devices with a projection of 1.75 m to 2.00 m performed best, achieving target lighting levels without issues of glare.
Resumo:
This workshop was supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS, http://www.aceas.org.au/), a facility of the Australian Government-funded Terrestrial Ecosystem Research Network (http://www.tern.org.au/), a research infrastructure facility established under the National Collaborative Research Infrastructure Strategy and Education Infrastructure Fund - Super Science Initiative, through the Department of Industry, Innovation, Science, Research and Tertiary Education. Hosted by: Queensland University of Technology, Brisbane, Queensland. (QUT, http://www.qut.edu.au/) Dates: 8-11 May 2012 Report Editors: Prof Stuart Parsons (Uni. Auckland, NZ) and Dr Michael Towsey (QUT). This report is a compilation of notes and discussion summaries contributed by those attending the Workshop. They have been assembled into a logical order by the editors. Another report (with photographs) can be obtained at: http://www.aceas.org.au/index.php?option=com_content&view=article&id=94&Itemid=96
Resumo:
Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.
Resumo:
Acoustic recordings of the environment are an important aid to ecologists monitoring biodiversity and environmental health. However, rapid advances in recording technology, storage and computing make it possible to accumulate thousands of hours of recordings, of which, ecologists can only listen to a small fraction. The big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from hours, days, months to years. The visualization should facilitate navigation and yield ecologically meaningful information. Our approach is to extract (at one minute resolution) acoustic indices which reflect content of ecological interest. An acoustic index is a statistic that summarizes some aspect of the distribution of acoustic energy in a recording. We combine indices to produce false-colour images that reveal acoustic content and facilitate navigation through recordings that are months or even years in duration.
Resumo:
This paper analyses the probabilistic linear discriminant analysis (PLDA) speaker verification approach with limited development data. This paper investigates the use of the median as the central tendency of a speaker’s i-vector representation, and the effectiveness of weighted discriminative techniques on the performance of state-of-the-art length-normalised Gaussian PLDA (GPLDA) speaker verification systems. The analysis within shows that the median (using a median fisher discriminator (MFD)) provides a better representation of a speaker when the number of representative i-vectors available during development is reduced, and that further, usage of the pair-wise weighting approach in weighted LDA and weighted MFD provides further improvement in limited development conditions. Best performance is obtained using a weighted MFD approach, which shows over 10% improvement in EER over the baseline GPLDA system on mismatched and interview-interview conditions.
Resumo:
This study presents the largest-known, investigation on discomfort glare with 493 surveys collected from five green buildings in Brisbane, Australia. The study was conducted on full-time employees, working under their everyday lighting conditions, all of whom had no affiliation with the research institution. The survey consisted of a specially tailored questionnaire to assess potential factors relating to discomfort glare. Luminance maps extracted from high dynamic range (HDR) images were used to capture the luminous environment of the occupants. Occupants who experienced glare on their monitor and/or electric glare were excluded from analysis leaving 419 available surveys. Occupants were more sensitive to glare than any of the tested indices accounted for. A new index, the UGP was developed to take into account the scope of results in the investigation. The index is based on a linear transformation of the UGR to calculate a probability of disturbed persons. However all glare indices had some correlation to discomfort, and statistically there was no difference between the DGI, UGR and CGI. The UGP broadly reflects the demographics of the working population in Australia and the new index is applicable to open plan green buildings.
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
This paper describes a texture recognition based method for segmenting kelp from images collected in highly dynamic shallow water environments by an Autonomous Underwater Vehicle (AUV). A particular challenge is image quality that is affected by uncontrolled lighting, reduced visibility, significantly varying perspective due to platform egomotion, and kelp sway from wave action. The kelp segmentation approach uses the Mahalanobis distance as a way to classify Haralick texture features from sub-regions within an image. The results illustrate the applicability of the method to classify kelp allowing construction of probability maps of kelp masses across a sequence of images.
Resumo:
The operation of Autonomous Underwater Vehicles (AUVs) within underwater sensor network fields provides an opportunity to reuse the network infrastructure for long baseline localisation of the AUV. Computationally efficient localisation can be accomplished using off-the-shelf hardware that is comparatively inexpensive and which could already be deployed in the environment for monitoring purposes. This paper describes the development of a particle filter based localisation system which is implemented onboard an AUV in real-time using ranging information obtained from an ad-hoc underwater sensor network. An experimental demonstration of this approach was conducted in a lake with results presented illustrating network communication and localisation performance.
Resumo:
This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.