544 resultados para Teaching experiment
Resumo:
Despite the evidence that Australia’s children are learning literacy, there is also significant evidence that the poorest and most disadvantaged children are being left behind. To date our understanding of the place of transitions in this has been limited, although there has been work on the fourth grade slump (Gee, 2000, 2008), the transition from primary years to secondary years (e.g. Bahr & Pendergast, 2007; Pendergast & Bahr, 2005, 2010), and transitions when changing schools (Henderson, 2008). In this chapter, we consider the notion of transitioning, as we unpack issues related to recognising and valuing student diversity and difference. We want to highlight ways of providing high quality and high equity literacy pedagogy and literacy outcomes for middle years students. We will also discuss the importance of recognising that students transit to schools and school learning from other significant contexts, each with their own combinations of literacy practices, rituals and values.
Resumo:
This paper describes the design and implementation of a unique undergraduate program in signal processing at the Queensland University of Technology (QUT). The criteria that influenced the choice of the subjects and the laboratories developed to support them are presented. A recently established Signal Processing Research Centre (SPRC) has played an important role in the development of the signal processing teaching program. The SPRC also provides training opportunities for postgraduate studies and research.
Resumo:
The importance of reflection in higher education, and across disciplinary fields is widely recognised; it is generally included in university graduate attributes, professional standards and program objectives. Furthermore, reflection is commonly embedded into assessment requirements in higher education subjects, often without necessary scaffolding or clear expectations for students. Despite the rhetoric around the importance of reflection for ongoing learning, there is scant literature on any systematic, developmental approach to teaching reflective learning across higher education programs/courses. Given that professional or academic reflection is not intuitive, and requires specific pedagogic intervention to do well, a program/course-wide approach is essential. This paper draws on current literature to theorise a new, transferable and customisable model for teaching and assessing reflective learning across higher education, which foregrounds and explains the pedagogic field of higher education as a multi-dimensional space. We argue that explicit and strategic pedagogic intervention, supported by dynamic resources, is necessary for successful, broad-scale approaches to reflection in higher education.
Resumo:
The importance of reflection in higher education, and across disciplinary fields is widely recognised. It is generally embedded in university graduate attributes, professional standards and course objectives. Furthermore, reflection is commonly included in assessment requirements in higher education subjects, often without necessary scaffolding or clear expectations for students. It is essential that academic staff have substantive knowledge and clear expectations about the aims of reflective activities, the most effective mode of representation, and appropriate teaching strategies to support students in deep, critical reflection. The paper argues the case for reflection to be represented in different modes, using discursive (language) or performative (symbolic practice) forms of expression according to disciplinary context and individual communicative strengths. It introduces key discursive and expressive elements that constitute different modes of representation in reflective tasks. This functional analysis of textual elements provides explicit knowledge for teaching and assessing multiple modes of reflection in higher education.
Resumo:
The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience- centred conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centred conception where teachers focused on challenging students with engaging problems; and (c) The Question-centred conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviours during professional development, with enhanced outcomes for engaging students in Science.
Resumo:
In response to concerns about the quality of English Language Learning (ELL) education at tertiary level, the Chinese Ministry of Education (CMoE) launched the College English Reform Program (CERP) in 2004. By means of a press release (CMoE, 2005) and a guideline document titled College English Curriculum Requirements (CECR) (CMoE, 2007), the CERP proposed two major changes to the College English assessment policy, which were: (1) the shift to optional status for the compulsory external test, the College English Test Band 4 (CET4); and (2) the incorporation of formative assessment into the existing summative assessment framework. This study investigated the interactions between the College English assessment policy change, the theoretical underpinnings, and the assessment practices within two Chinese universities (one Key University and one Non-Key University). It adopted a sociocultural theoretical perspective to examine the implementation process as experienced by local actors of institutional and classroom levels. Systematic data analysis using a constant comparative method (Merriam, 1998) revealed that contextual factors and implementation issues did not lead to significant differences in the two cases. Lack of training in assessment and the sociocultural factors such as the traditional emphasis on the product of learning and hierarchical teacher/students relationship are decisive and responsible for the limited effect of the reform.
Resumo:
In spite of having a long history in education, inquiry teaching (the teaching in ways that foster inquiry based learning in students) in science education is still a highly problematic issue. However, before teacher educators can hope to effectively influence teacher implementation of inquiry teaching in the science classroom, educators need to understand teachers’ current conceptions of inquiry teaching. This study describes the qualitatively different ways in which 20 primary school teachers experienced inquiry teaching in science education. A phenomenographic approach was adopted and data sourced from interviews of these teachers. The three categories of experiences that emerged from this study were; Student Centred Experiences (Category 1), Teacher Generated Problems (Category 2), and Student Generated Questions (Category 3). In Category 1 teachers structure their teaching around students sensory experiences, expecting that students will see, hear, feel and do interesting things that will focus their attention, have them asking science questions, and improve their engagement in learning. In Category 2 teachers structure their teaching around a given problem they have designed and that the students are required to solve. In Category 3 teachers structure their teaching around helping students to ask and answer their own questions about phenomena. These categories describe a hierarchy with the Student Generated Questions Category as the most inclusive. These categories were contrasted with contemporary educational theory, and it was found that when given the chance to voice their own conceptions without such comparison teachers speak of inquiry teaching in only one of the three categories mentioned. These results also help inform our theoretical understanding of teacher conceptions of inquiry teaching. Knowing what teachers actually experience as inquiry teaching, as opposed to understand theoretically, is a valuable contribution to the literature. This knowledge provides a valuable contribution to educational theory, which helps policy, curriculum development, and the practicing primary school teachers to more fully understand and implement the best educative practices in their daily work. Having teachers experience the qualitatively different ways of experiencing inquiry teaching uncovered in this study is expected to help teachers to move towards a more student-centred, authentic inquiry outcome for their students and themselves. Going beyond this to challenge teacher epistemological beliefs regarding the source of knowledge may also assist them in developing more informed notions of the nature of science and of scientific inquiry during professional development opportunities. The development of scientific literacy in students, a high priority for governments worldwide, will only to benefit from these initiatives.
Resumo:
The intention of the analysis in this paper was to determine, from interviews with eleven early years’ teachers, what knowledge guided their teaching of moral behaviour. Six of the teachers defined moral behaviour in terms of social conventions only. Children’s learning was attributed by five of the teachers to incidental/contextual issues. Nine of the teachers used discussion of issues, in various contexts, as a way of teaching about social and moral issues. The majority of the teachers (n=7) gave the source of their knowledge of pedagogy as practical as opposed to theoretically informed. There was no clear relationship between their definitions, understanding of children’s learning, pedagogy or source of knowledge. Most of the teachers were using discussion, negotiation and reflection to develop the children’s moral and social behaviour. This is probably effective; however, it suggests a strong need for teaching of moral development to be given more prominence and addressed directly in in-service courses so that teachers are clear about their intentions and the most effective ways of achieving them.
Resumo:
Schools have long been seen as institutions for preparing children for life, both academically and as moral agents in society. In order to become capable, moral citizens, children need to be provided with opportunities to learn moral values. However, little is known about how teachers enact social and moral values programs in the classroom. The aim of this paper is to investigate the practices that Australian early years teachers describe as important for teaching moral values. To investigate early years teachers’ understandings of moral pedagogy, 379 Australian teachers with experience teaching children in the early years were invited to participate in an on-line survey. This paper focuses on responses provided to an open-ended question relating to teaching practices for moral values. The responses were analysed using an interpretive methodology. The results indicate that the most prominent approaches to teaching moral values described by this group of Australian early years teachers were engaging children in moral activities. This was closely followed by teaching practices for transmitting moral values. Engaging children in building meaning and participatory learning for moral values were least often described.
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.
Resumo:
This paper reports on the outcomes of a peer partnership program trialled at the Queensland University of Technology (QUT), Australia. The program was designed based on a community of practice methodology to bring together academic staff for the purpose of advancing teaching practice. The program encouraged professional and supportive environments for the purpose of critical reflection and personal development. The belief was that quality teaching is core business and vital to university organisational goals. Peer partnership programs support improvement in teaching and learning. Participants in the program reported the program enhanced their commitment and insight into teaching and that there is willingness to be involved if supported by colleagues and an organisation. Feedback from participants in the program was positive and outcomes arising from the QUT Peer Partnership Project were the development of an online peer partner tool-kit, staff development training, an instructional DVD and integration of the project goals within QUT staff development programs.
Resumo:
17.1 Up until the 1990s the methods used to teach the law had evolved little since the first law schools were established in Australia. As Keyes and Johnstone observed: In the traditional model, most teachers uncritically replicate the learning experiences that they had when students, which usually means that the dominant mode of instruction is reading lecture notes to large classes in which students are largely passive. Traditional legal education has been described in the following terms: Traditionally law is taught through a series of lectures, with little or no student involvement, and a tutorial programme. Sometimes tutorials are referred to as seminars but the terminology used is often insignificant: both terms refer to probably the only form of student participation that takes place throughout these students‘ academic legal education. The tutorial consists of analysing the answers, prepared in advanced (sic), to artificial Janet and John Doe problems or esoteric essay questions. The primary focus of traditional legal education is the transmission of content knowledge, more particularly the teaching of legal rules, especially those drawn from case law. This approach has a long pedigree. Writing in 1883, Dicey proposed that nothing can be taught to students of greater value, either intellectually or for the purposes of legal practice, than the habit of looking on the law as a series of rules‘.
Resumo:
Project-based learning (PBL) is widely used in engineering courses. The closer to real-life the project, the greater the relevance and depth of learning experienced by students. Formula Society of Automotive Engineering (FSAE) is a fine example of a team-based project modelled on real-life problems whereby each student team designs and builds a small race car for competitive evaluation. Queensland University of Technology (QUT) has participated in FSAE-Australia since 2004. Based on the success of the project, QUT has gone the additional step of introducing a motor-racing specialization (second major) to complement its mechanical engineering degree. In this paper, the benefits of teaching motor-racing engineering through real-life projects are presented together with a discussion of the challenges faced and how they have been addressed. In order to validate the authors' observations on the teaching approaches used, student feedback was solicited through QUT's online learning experience survey (LEX), as well as a customized paper-based survey. The results of the surveys are analysed and discussed in this paper.