288 resultados para Statistical tools
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
Nitrous oxide emissions from soil are known to be spatially and temporally volatile. Reliable estimation of emissions over a given time and space depends on measuring with sufficient intensity but deciding on the number of measuring stations and the frequency of observation can be vexing. The question of low frequency manual observations providing comparable results to high frequency automated sampling also arises. Data collected from a replicated field experiment was intensively studied with the intention to give some statistically robust guidance on these issues. The experiment had nitrous oxide soil to air flux monitored within 10 m by 2.5 m plots by automated closed chambers under a 3 h average sampling interval and by manual static chambers under a three day average sampling interval over sixty days. Observed trends in flux over time by the static chambers were mostly within the auto chamber bounds of experimental error. Cumulated nitrous oxide emissions as measured by each system were also within error bounds. Under the temporal response pattern in this experiment, no significant loss of information was observed after culling the data to simulate results under various low frequency scenarios. Within the confines of this experiment observations from the manual chambers were not spatially correlated above distances of 1 m. Statistical power was therefore found to improve due to increased replicates per treatment or chambers per replicate. Careful after action review of experimental data can deliver savings for future work.
Resumo:
Worksite wellness efforts can generate enormous health-care savings. Many of the methods available to obtain health and wellness measures can be confusing and lack clarity; for example it can be difficult to understand if measures are appropriate for individuals or population health. Come along and enjoy a hands-on learning experience about measures and better understanding health and wellness outcomes from baseline, midway and beyond.
Resumo:
1. Essential hypertension occurs in people with an underlying genetic predisposition who subject themselves to adverse environmental influences. The number of genes involved is unknown, as is the extent to which each contributes to final blood pressure and the severity of the disease. 2. In the past, studies of potential candidate genes have been performed by association (case-control) analysis of unrelated individuals or linkage (pedigree or sibpair) analysis of families. These studies have resulted in several positive findings but, as one may expect, also an enormous number of negative results. 3. In order to uncover the major genetic loci for essential hypertension, it is proposed that scanning the genome systematically in 100- 200 affected sibships should prove successful. 4. This involves genotyping sets of hypertensive sibships to determine their complement of several hundred microsatellite polymorphisms. Those that are highly informative, by having a high heterozygosity, are most suitable. Also, the markers need to be spaced sufficiently evenly across the genome so as to ensure adequate coverage. 5. Tests are performed to determine increased segregation of alleles of each marker with hypertension. The analytical tools involve specialized statistical programs that can detect such differences. Non- parametric multipoint analysis is an appropriate approach. 6. In this way, loci for essential hypertension are beginning to emerge.
Resumo:
The promise of ‘big data’ has generated a significant deal of interest in the development of new approaches to research in the humanities and social sciences, as well as a range of important critical interventions which warn of an unquestioned rush to ‘big data’. Drawing on the experiences made in developing innovative ‘big data’ approaches to social media research, this paper examines some of the repercussions for the scholarly research and publication practices of those researchers who do pursue the path of ‘big data’–centric investigation in their work. As researchers import the tools and methods of highly quantitative, statistical analysis from the ‘hard’ sciences into computational, digital humanities research, must they also subscribe to the language and assumptions underlying such ‘scientificity’? If so, how does this affect the choices made in gathering, processing, analysing, and disseminating the outcomes of digital humanities research? In particular, is there a need to rethink the forms and formats of publishing scholarly work in order to enable the rigorous scrutiny and replicability of research outcomes?
Resumo:
This thesis explored the knowledge and reasoning of young children in solving novel statistical problems, and the influence of problem context and design on their solutions. It found that young children's statistical competencies are underestimated, and that problem design and context facilitated children's application of a wide range of knowledge and reasoning skills, none of which had been taught. A qualitative design-based research method, informed by the Models and Modeling perspective (Lesh & Doerr, 2003) underpinned the study. Data modelling activities incorporating picture story books were used to contextualise the problems. Children applied real-world understanding to problem solving, including attribute identification, categorisation and classification skills. Intuitive and metarepresentational knowledge together with inductive and probabilistic reasoning was used to make sense of data, and beginning awareness of statistical variation and informal inference was visible.
Resumo:
Social media are becoming increasingly integrated into political practices around the world. Politicians, citizens and journalists employ new media tools to support and supplement their political goals. This report examines the way in which social media are portrayed as political tools in Australian mainstream media in order to establish what the relations are between social media and mainstream media in political news reporting. Through the close content-analysis of 93 articles sampled from the years 2008, 2010 and 2012, we provide a longitudinal insight into how the perception by Australian journalists and news media organisations of social media as political tools has changed over time. As the mainstream media remain crucial in framing the public understanding of new technologies and practices, this enhances our understanding of the positioning of social media tools for political communication.
Resumo:
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
Resumo:
Spectroscopic studies of complex clinical fluids have led to the application of a more holistic approach to their chemical analysis becoming more popular and widely employed. The efficient and effective interpretation of multidimensional spectroscopic data relies on many chemometric techniques and one such group of tools is represented by so-called correlation analysis methods. Typical of these techniques are two-dimensional correlation analysis and statistical total correlation spectroscopy (STOCSY). Whilst the former has largely been applied to optical spectroscopic analysis, STOCSY was developed and has been applied almost exclusively to NMR metabonomic studies. Using a 1H NMR study of human blood plasma, from subjects recovering from exhaustive exercise trials, the basic concepts and applications of these techniques are examined. Typical information from their application to NMR-based metabonomics is presented and their value in aiding interpretation of NMR data obtained from biological systems is illustrated. Major energy metabolites are identified in the NMR spectra and the dynamics of their appearance and removal from plasma during exercise recovery are illustrated and discussed. The complementary nature of two-dimensional correlation analysis and statistical total correlation spectroscopy are highlighted.
Resumo:
This chapter argues for the need to restructure children’s statistical experiences from the beginning years of formal schooling. The ability to understand and apply statistical reasoning is paramount across all walks of life, as seen in the variety of graphs, tables, diagrams, and other data representations requiring interpretation. Young children are immersed in our data-driven society, with early access to computer technology and daily exposure to the mass media. With the rate of data proliferation have come increased calls for advancing children’s statistical reasoning abilities, commencing with the earliest years of schooling (e.g., Langrall et al. 2008; Lehrer and Schauble 2005; Shaughnessy 2010; Whitin and Whitin 2011). Several articles (e.g., Franklin and Garfield 2006; Langrall et al. 2008) and policy documents (e.g., National Council of Teachers ofMathematics 2006) have highlighted the need for a renewed focus on this component of early mathematics learning, with children working mathematically and scientifically in dealing with realworld data. One approach to this component in the beginning school years is through data modelling (English 2010; Lehrer and Romberg 1996; Lehrer and Schauble 2000, 2007)...
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
In the recent decision Association for Molecular Pathology v. Myriad Genetics1, the US Supreme Court held that naturally occurring sequences from human genomic DNA are not patentable subject matter. Only certain complementary DNAs (cDNA), modified sequences and methods to use sequences are potentially patentable. It is likely that this distinction will hold for all DNA sequences, whether animal, plant or microbial2. However, it is not clear whether this means that other naturally occurring informational molecules, such as polypeptides (proteins) or polysaccharides, will also be excluded from patents. The decision underscores a pressing need for precise analysis of patents that disclose and reference genetic sequences, especially in the claims. Similarly, data sets, standards compliance and analytical tools must be improved—in particular, data sets and analytical tools must be made openly accessible—in order to provide a basis for effective decision making and policy setting to support biological innovation. Here, we present a web-based platform that allows such data aggregation, analysis and visualization in an open, shareable facility. To demonstrate the potential for the extension of this platform to global patent jurisdictions, we discuss the results of a global survey of patent offices that shows that much progress is still needed in making these data freely available for aggregation in the first place.