587 resultados para Resistance strategies
Resumo:
The gastrointestinal tract plays an important role in the improved appetite control and weight loss in response to bariatric surgery. Other strategies which similarly alter gastrointestinal responses to food intake could contribute to successful weight management. The aim of this review is to discuss the effects of surgical, pharmacological and behavioural weight loss interventions on gastrointestinal targets of appetite control, including gastric emptying. Gastrointestinal peptides are also discussed because of their integrative relationship in appetite control. This review shows that different strategies exert diverse effects and there is no consensus on the optimal strategy for manipulating gastric emptying to improve appetite control. Emerging evidence from surgical procedures (e.g., sleeve gastrectomy and Roux en-Y gastric bypass) suggests a faster emptying rate and earlier delivery of nutrients to the distal small intestine may improve appetite control. Energy restriction slows gastric emptying, while the effect of exercise-induced weight loss on gastric emptying remains to be established. The limited evidence suggests that chronic exercise is associated with faster gastric emptying which we hypothesise will impact on appetite control and energy balance. Understanding how behavioural weight loss interventions (e.g., diet and exercise) alter gastrointestinal targets of appetite control may be important to improve their success in weight management.
Resumo:
A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields of economics, engineering, computer science and biology due to their efficiency in solving design optimization problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of high quality solutions with low computational cost. In this paper, two optimization techniques are considered; the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.