206 resultados para Linear programming
Resumo:
The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Resumo:
This thesis articulates and examines public engagement programming in an emerging, non¬-traditional site. As a practice-led research project, the creative work proposes a site responsive, engagement centric, agile model for curatorial programming that developed out of the dynamic, new media/digital, curatorial practice at QUT's Creative Industries Precinct. The model and its accompanying exegetical framework, Curating in Uncharted Territories, offer a theoretically informed approach to programming, delivering and reporting for curatorial practices in a non¬-traditional sites of public engagement. The research provides the foundation for full development of the model and the basis for further research.
Resumo:
This paper proposes the addition of a weighted median Fisher discriminator (WMFD) projection prior to length-normalised Gaussian probabilistic linear discriminant analysis (GPLDA) modelling in order to compensate the additional session variation. In limited microphone data conditions, a linear-weighted approach is introduced to increase the influence of microphone speech dataset. The linear-weighted WMFD-projected GPLDA system shows improvements in EER and DCF values over the pooled LDA- and WMFD-projected GPLDA systems in inter-view-interview condition as WMFD projection extracts more speaker discriminant information with limited number of sessions/ speaker data, and linear-weighted GPLDA approach estimates reliable model parameters with limited microphone data.
Resumo:
Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.
Resumo:
We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.
Resumo:
Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.
Resumo:
In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the tau-leaping framework to past information. Using the theta-trapezoidal tau-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k >= 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models
Resumo:
Objectives To investigate whether a sudden temperature change between neighboring days has significant impact on mortality. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear models was used to estimate the association of temperature change between neighboring days with mortality in a subtropical Chinese city during 2008–2012. Temperature change was calculated as the current day’s temperature minus the previous day’s temperature. Results A significant effect of temperature change between neighboring days on mortality was observed. Temperature increase was significantly associated with elevated mortality from non-accidental and cardiovascular diseases, while temperature decrease had a protective effect on non-accidental mortality and cardiovascular mortality. Males and people aged 65 years or older appeared to be more vulnerable to the impact of temperature change. Conclusions Temperature increase between neighboring days has a significant adverse impact on mortality. Further health mitigation strategies as a response to climate change should take into account temperature variation between neighboring days.
Resumo:
In this paper, we look at the concept of reversibility, that is, negating opposites, counterbalances, and actions that can be reversed. Piaget identified reversibility as an indicator of the ability to reason at a concrete operational level. We investigate to what degree novice programmers manifest the ability to work with this concept of reversibility by providing them with a small piece of code and then asking them to write code that undoes the effect of that code. On testing entire cohorts of students in their first year of learning to program, we found an overwhelming majority of them could not cope with such a concept. We then conducted think aloud studies of novices where we observed them working on this task and analyzed their contrasting abilities to deal with it. The results of this study demonstrate the need for better understanding our students' reasoning abilities, and a teaching model aimed at that level of reality.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.