301 resultados para Large-Eddy Simulation
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
Routing trains within passenger stations in major cities is a common scheduling problem for railway operation. Various studies have been undertaken to derive and formulate solutions to this route allocation problem (RAP) which is particularly evident in mainland China nowadays because of the growing traffic demand and limited station capacity. A reasonable solution must be selected from a set of available RAP solutions attained in the planning stage to facilitate station operation. The selection is however based on the experience of the operators only and objective evaluation of the solutions is rarely addressed. In order to maximise the utilisation of station capacity while maintaining service quality and allowing for service disturbance, quantitative evaluation of RAP solutions is highly desirable. In this study, quantitative evaluation of RAP solutions is proposed and it is enabled by a set of indices covering infrastructure utilisation, buffer times and delay propagation. The proposed evaluation is carried out on a number of RAP solutions at a real-life busy railway station in mainland China and the results highlight the effectiveness of the indices in pinpointing the strengths and weaknesses of the solutions. This study provides the necessary platform to improve the RAP solution in planning and to allow train re-routing upon service disturbances.
Resumo:
Electrostatic discharge is the sudden and brief electric current that flashes between two objects at different voltages. This is a serious issue ranging in application from solid-state electronics to spectacular and dangerous lightning strikes (arc flashes). The research herein presents work on the experimental simulation and measurement of the energy in an electrostatic discharge. The energy released in these discharges has been linked to ignitions and burning in a number of documented disasters and can be enormously hazardous in many other industrial scenarios. Simulations of electrostatic discharges were designed to specifications by IEC standards. This is typically based on the residual voltage/charge on the discharge capacitor, whereas this research examines the voltage and current in the actual spark in order to obtain a more precise comparative measurement of the energy dissipated.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.
Resumo:
Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective and less error-prone than developing them from scratch. Since process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. To make our approach more applicable, we consider the semantic similarity between labels. Experiments are conducted to demonstrate that our approach is efficient.
Resumo:
Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality where dangerous real world scenarios can be safely replicated. However despite the growing popularity of advanced training simulations, methods for evaluating their use rely heavily on subjective measures or analysis of final outcomes. Without dynamic, objective performance measures the outcome of training in terms of impact on cognitive skills and ability to transfer newly acquired skills to the real world is unknown. The relationship between affective intensity and cognitive learning provides a potential new approach to ensure the processing of cognitions which occur prior to final outcomes, such as problem-solving and decision-making, are adequately evaluated. This paper describes the technical aspects of pilot work recently undertaken to develop a new measurement tool designed to objectively track individual affect levels during simulation-based training.
Resumo:
Advances in data mining have provided techniques for automatically discovering underlying knowledge and extracting useful information from large volumes of data. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large complex databases. Application of data mining to manufacturing is relatively limited mainly because of complexity of manufacturing data. Growing self organizing map (GSOM) algorithm has been proven to be an efficient algorithm to analyze unsupervised DNA data. However, it produced unsatisfactory clustering when used on some large manufacturing data. In this paper a data mining methodology has been proposed using a GSOM tool which was developed using a modified GSOM algorithm. The proposed method is used to generate clusters for good and faulty products from a manufacturing dataset. The clustering quality (CQ) measure proposed in the paper is used to evaluate the performance of the cluster maps. The paper also proposed an automatic identification of variables to find the most probable causative factor(s) that discriminate between good and faulty product by quickly examining the historical manufacturing data. The proposed method offers the manufacturers to smoothen the production flow and improve the quality of the products. Simulation results on small and large manufacturing data show the effectiveness of the proposed method.
Resumo:
First year undergraduate university classes can be very large, and big student numbers often creates a challenge for instructors to ensure assignments are graded consistently across the cohort. This session describes and demonstrates the use of interactive audience response technology (ART) with assessors (rather than students) to moderate assignment grading. Results from preliminary research indicate this method of moderating the grading of assignments is effective, and achieves more consistent outcomes for students.
Resumo:
This paper describes the development of a simulation model for operating theatres. Elective patient scheduling is complicated by several factors; stochastic demand for resources due to variation in the nature and severity of a patient’s illness, unexpected complications in a patient’s course of treatment and the arrival of non-scheduled emergency patients which compete for resources. Extend simulation software was used for its ability to represent highly complex systems and analyse model outputs. Patient arrivals and lengths of surgery are determined by analysis of historical data. The model was used to explore the effects increasing patient arrivals and alternative elective patient admission disciplines would have on the performance measures. The model can be used as a decision support system for hospital planners.
Resumo:
To accurately and effectively simulate large deformation is one of the major challenges in numerical modeling of metal forming. In this paper, an adaptive local meshless formulation based on the meshless shape functions and the local weak-form is developed for the large deformation analysis. Total Lagrangian (TL) and the Updated Lagrangian (UL) approaches are used and thoroughly compared each other in computational efficiency and accuracy. It has been found that the developed meshless technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming. In addition, the TL has better computational efficiency than the UL. However, the adaptive analysis is much more efficient using the UL approach than using in the TL approach.
Resumo:
This paper presents a systems-level approach for adjudicating the prioritization, selection, and planning of inservcie professional development (PD) for teachers. We present a step-by-step model for documenting and assessing system-wide 'bids' for professional development programs
Resumo:
Lean project management is the comprehensive adaption of other lean concept like lean construction, lean manufacturing and lean thinking into project management context. Execution of many similar industrial projects creates the idea of lean project management in companies and rapidly growing in industries. This paper offers the standardization method in order to achieve Lean project management in large scale industrial project. Standardization refers to all activity which makes two projects most identical and unify to each other like standardization of design, reducing output variability, value analysis and strategic management. Although standard project may have minor effi ciency decrease, compare to custom built project; but great advantage of standard project like cost saving, time reduction and quality improvement justify standardization methodology. This paper based on empirical experience in industrial project and theoretical analysis of benefi ts of project standardization.
Resumo:
Research is indicating that individuals who present for DUI treatment may have competing substance abuse and mental health needs. This study aimed to examine the extent of such comorbidity issues among a sample of Texas DUI offenders. Method: Records of 36,372 DUI clients and 308,695 non-DUI clients admitted to Texas treatment programs between 2005 and 2008 were obtained from the State's administrative dataset. The data were analysed to identify the relationship between substance use, psychiatric problems, program completion and recidivism rates. Results: Analysis indicated that while non-DUI clients were more likely to present with more severe illicit substance use problems, DUI clients were more likely to have a primary problem with alcohol. Additionally, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health needs, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This group were also more at risk of being diagnosed with Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Interestingly, female DUI and non-DUI clients were also more likely to be diagnosed with mental health problems compared to males, as well as more likely to be placed on medications at admission and have problems with methamphetamine, cocaine, and opiates. Conclusion: The findings highlight the complex competing needs of some DUI offenders who enter treatment. The results also suggest that there is a need to utilise mental health and substance abuse screening methods to ensure DUI offenders are directed towards appropriate treatment pathways as well as ensure that such interventions adequately cater for complex substance abuse and psychiatric needs.