284 resultados para Induced circular dichroism
Resumo:
Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry
Resumo:
Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.
Resumo:
The ion PhCO2--CHPh, upon collision activation, undergoes competitive losses of CO and CO2 of which the former process produces the base peak of the spectrum. Product ion and substituent effect (Hammett) studies indicate that PhCO2--CHPh cyclises to a deprotonated hydroxydiphenyloxirane which ring opens to PhCOCH(O-)Ph. This anion then undergoes an anionic 1,2-Wittig type rearrangement {through [PhCO- (PhCHO)]} to form Ph2CHO- and CO. The mechanism of the 1,2-rearrangement has been probed by an ab initio study [at MP4(SDTQ)/6-31++G(d,p) level] of the model system HCOCH2O- →; MeO- + CO The analogous system RCO2--CHPh (R = alkyl) similarly loses CO, and the migratory aptitudes of the alkyl R groups in this reaction are Bu′ > Me > Et ∼Pri). This trend correlates with the order of anion basicities (i.e. the order of ΔG○acid values of RH), supporting the operation of an anion migration process. The loss of CO2 from PhCO2--CHPh yields Ph2CH- as the anionic product: several mechanistic scenarios are possible, one of which involves an initial ipso nucleophilic substitution.
Resumo:
The non-8-enoate anion undergoes losses of the elements of C3H6, C4H8 and C6H12 on collisional activation, The mechanisms of these processes have been elucidated by a combination of product ion and labelling (H-2 and C-13) studies, together with a neutralisation reionisation mass spectrometric study. These studies allow the following conclusions to be made. (i) The loss of C3H6 involves cyclisation of the enolate anion of non-8-enoic acid to yield the cyclopentyl carboxylate anion and propene. (ii) The loss of 'C4H8' is a charge-remote process (one which proceeds remote from the charged centre) which yields the pent-4-enoate anion, butadiene and dihydrogen. This process co-occurs and competes with complex H scrambling. (iii) The major loss of 'C6H12' occurs primarily by a charge-remote process yielding the acrylate anion, hexa-1,5-diene and dihydrogen, but in this case no H scrambling accompanies the process. (iv) It is argued that the major reason why the two charge-remote processes occur in preference to anion-induced losses of but-l-ene and hex-l-ene from the respective 4- and 2-anions is that although these anions are formed, they have alternative and lower energy fragmentation pathways than those involving the losses of but-l-ene and hex-l-ene; viz. the transient 4-anion undergoes facile proton transfer to yield a more stable anion, whereas the 2-(enolate) anion undergoes preferential cyclisation followed by elimination of propene [see (i) above].
Resumo:
The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.
Resumo:
Matrix metalloproteinase-2 (MMP-2), a zymogen requiring proteolytic activation for catalytic activity, has been implicated broadly in the invasion and metastasis of many cancer model systems, including human breast cancer (HBC). MMP-2 has been immunolocalized to carcinomatous human breast, where the degree of activation of MMP-2 correlates well with tumor grade and patient prognosis. Using Matrigel assays, we have stratified HBC cell lines for invasiveness in vitro, and compared this to their potential for metastatic spread in nude mice. HBC cell lines expressing the mesenchymal marker protein vimentin were found to be highly invasive in vitro, and tended to form metastases in nude mice. We have further discovered that culture on collagen-I gels (Vitrogen(TM): Vg) induces MMP-2-activator in highly invasive but not poorly invasive HBC cell lines. As seen for other MMP-2-activator inducing regimens, this induction requires protein synthesis and an intact MMP-2 hemopexin-like domain, appears to be mediated by a cell surface activity, and can be inhibited by metalloproteinase inhibitors. The induction is highly specific to collagen I, and is not seen with thin coatings of collagen I, collagen IV, laminin, or fibronectin, or with 3-dimensional gels of laminin, Matrigel, or gelatin. This review focuses on collagen I and MMP- 2, their localization and source in HBC, and their relationship(s) to MMP-2 activation and HBC metastasis. The relevance of collagen I in activation of MMP-2 in vivo is discussed in terms of stromal cell: tumor cell interaction for collagen I deposition, MMP-2 production and MMP-2-activation. Such cooperativity may exist in vivo for MMP-2 participation in HBC dissemination. A more complete understanding of the regulation of MMP-2-activator by type I collagen may provide new avenues for improved diagnosis and prognosis of human breast cancer.
Resumo:
Although the Mr. 72,000 type IV collagenase (matrix metalloproteinase 2) has been implicated in a variety of normal and pathogenic processes, its activation mechanism in vivo is unclear. We have found that fibroblasts from normal and neoplastic human breast, as well as the sarcomatous human Hs578T and HT1080 cell lines, activate endogenous matrix metalloprotease 2 when cultured on type I collagen gels, but not on plastic, fibronectin, collagen IV, gelatin, matrigel, or basement membrane-like HR9 cell matrix. This activation is monitored by the zymographic detection of Mr 59,000 and/or Mr 62,000 species, requires 2-3 days of culture on vitrogen to manifest, is cycloheximide inhibitable, and correlates with an arborized morphology. A similar activation pattern was seen in these cells in response to Concanavalin A but not transforming growth factor β or 12-O-tetradecanoylphorbol-13-acetate. The interstitial matrix may thus play an important role in regulating matrix degradation in vivo.
Resumo:
ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.
Resumo:
Expression of the intermediate filament protein vimentin, and loss of the cellular adhesion protein uvomorulin (E-cadherin) have been associated with increased invasiveness of established human breast cancer cell lines in vitro and in vivo. In the current study, we have further examined these relationships in oncogenically transformed human mammary epithelial cells. A normal human mammary epithelial strain, termed 184, was previously immortalized with benzo[a]pyrene, and two distinct sublines were derived (A1N4 and 184B5). These sublines were infected with retroviral vectors containing a single or two oncogenes of the nuclear, cytoplasmic, and plasma membrane-associated type (v-rasH, v-rasKi, v -mos, SV40T and c -myc). All infectants have been previously shown to exhibit some aspects of phenotypic transformation. In the current study, cellular invasiveness was determined in vitro using Matrigel, a reconstituted basement membrane extract. Lineage-specific differences were observed with respect to low constitutive invasiveness and invasive changes after infection with ras, despite similar ras-induced transformation of each line. Major effects on cellular invasiveness were observed after infection of the cells with two different oncogenes (v-rasH + SV40T and v -rasH + v -mos). In contrast, the effects of single oncogenes were only modest or negligible. All oncogenic infectants demonstrated increased attachment to laminin, but altered secretion of the 72 kDa and 92 kDa gelatinases was not associated with any aspect of malignant progression. Each of the two highly invasive double oncogene transformants were vimentinpositive and uvomorulin-negative, a phenotype indicative of the epithelial-mesenchymal transition (EMT) previously associated with invasiveness of established human breast cancer cell lines. Weakly invasive untransformed mammary epithelial cells in this study were positive for both vimentin and uvomorulin, suggesting that uvomorulin may over-ride the otherwise vimentin-associated invasiveness.
Resumo:
We have previously reported that induction of MMP-2 activation by Concanavalin A (ConA) in MDA-MB-231 human breast cancer cells involves both transcriptional and post-transcriptional mechanisms, and that the continuous presence of ConA is required for MMP-2 activation (Yu et al. Cancer Res, 55, 3272-7, 1995). In an effort to identify signal transduction pathways which may either contribute to or modulate this mechanism, we found that three different cAMP-inducing agents, cholera toxin (CT), forskolin (FSK), and 3- isobutyl-1-methylxanthine (IBMX) partially inhibited ConA-induced MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. Combinations of CT or FSK with IBMX exhibited additive effects on reduction of MT1-MMP mRNA expression and MMP-2 activation. Agents which increase cAMP levels appeared to target transcriptional aspects of ConA induction, reducing MT1-MMP mRNA and protein in parallel with the reduced MMP-2 activation. In the absence of ConA, down-regulation of constitutive production of MT1-MMP mRNA and protein was observed, indicating that cAMP acts independently of ConA. These observations may help to elucidate factors regulating MT1-MMP expression, which may be pivotal to the elaboration of invasive machinery on the cell surface.
Resumo:
Recent developments in analytical technologies have driven significant advances in lipid science. The sensitivity and selectivity of modern mass spectrometers can now provide for the detection and even quantification of many hundreds of lipids in a single analysis. In parallel, increasing evidence from structural biology suggests that a detailed knowledge of lipid molecular structure including carbon-carbon double bond position, stereochemistry and acyl chain regiochemistry is required to fully appreciate the biochemical role(s) of individual lipids. Here we review the capabilities and limitations of tandem mass spectrometry to provide this level of structural specificity in the analysis of lipids present in complex biological extracts. In particular, we focus on the capabilities of a novel technology termed ozone-induced dissociation to identify the position (s) of double bonds in unsaturated lipids and discuss its possible role in efforts to develop workflows that provide for complete structure elucidation of lipids by mass spectrometry alone: so-called top-down lipidomics. This article is part of a Special Issue entitled: Lipodomics and Imaging Mass Spectrom. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.
Resumo:
In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.
Resumo:
Artemisinin (ART) based combination therapy (ACT) is used as the first line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART induced ring stage dormancy and recovery has been implicated as possible cause of recrudescence; however, little is known about the characteristics of dormant parasites including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA) induced dormancy and recovery. Transcription analysis showed an immediate down regulation for 10 genes following exposure to DHA, but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, were also maintained. Additions of inhibitors for biotin acetyl CoA carbozylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively following DHA treatment. Our results demonstrate most metabolic pathways are down regulated in DHA induced dormant parasites. In contrast fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.
Resumo:
The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.