189 resultados para Granular materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This RIRDC publication reports the findings and recommendations of the RIRDC funded study, "Fabrication of Electronic Materials from Australian Essential Oils". This project was undertaken to facilitate an expansion of the Australian Essential Oils Industry through the development of novel applications in the Electronic and Bio-Materials Industries. The findings presented in this report will provide value broadly across the Australian Essential Oils Industry, and more particularly to the growers involved in the production of tea tree, lavender and other essential oils. Several essential oils, namely tea tree oil, sandalwood oil, eucalyptus oil, alpha-pinene, d-limonene, lavender oil (a separate PhD project) and five major components of tea tree oil were tested. With the exception of sandalwood oil, all oils investigated were successfully polymerised. Importantly, this project determined that it is possible to use an environmentally friendly, inexpensive process of polymerisation to fabricate materials from essential oils in a reproducible manner with properties required by the optics, electronics, protective coatings, and bio-material industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption has been considered as an efficient method for the treatment of dye effluents, but properdisposal of the spent adsorbents is still a challenge. This work attempts to provide a facile methodto reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II(OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washedwith acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that thecarbonization could be well achieved above 600◦C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000 ◦C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption–desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m2/g and 1.67 cm3/g for the sample carbonized at 800 ◦C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicultural social policies were formulated in Australia during the 1970s in response to challenges that had arisen the wake of a large-scale immigration program. Given recent intensification and diversification of immigrant intakes, however, understandings of multiculturalism have been contested repeatedly while new social demands have been made of the policy. In this context, questions have been raised about the adequacy of multicultural ethical education in Australian schools. These concern not only the type of ethics taught, but also the emphasis placed on ethics per se. This study emerges out of this context to look at the utility of using purpose-written philosophical materials– specifically, immigration-themed materials written by advocates of philosophy for children – for development of ethical understanding in multicultural Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature demonstrates that understanding relating to the use of materials in product design has been investigated from both engineering and design perspectives. However, none of these studies have explored the consumers’ concepts of the materials; rather they have focused on participants’ discussions of material samples. Consumers’ emotional reactions to the materials themselves or the consumers’ reaction to the durability of the materials have not been previously explored in depth. This research has investigated these issues and has found that consumers have very specific concepts about materials. Furthermore, the combinations of consumer concepts that are likely to elicit an emotional judgement by the consumer have also been identified. It was found that consumers are conscious of the durability of their products and the materials that they are made from. This knowledge contributes to the support of environmentally conscious design, as well as user-centered design knowledge and practice. An understanding of the emotion consumers attribute to the effect wear and aging had on the materials’ physical appearance has been achieved. This understanding of consumers’ emotional reactions to materials can contribute not only to design considerations but to knowledge regarding the promotion of prolonged product-user relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of physical education curriculum in the developed world and specifically in Australia tends to be guided in principle by syllabus documents that represent, in varying degrees, some form of government education priorities. Through the use of critical discourse analysis we analyze one such syllabus example (an official syllabus document of one of the Australian States) to explore the relationships between the emancipatory/social justice expectations presented in the rubric of and introduction to the official syllabus document, and the language details of learning outcomes that indicate how the expectations might be satisfied. Given the complexity and multilevel pathways of message systems/ideologies we question the efficacy of such documents oriented around social justice principles to genuinely deliver more radical agendas which promote social change and encourage a preparedness to engage in social action leading to a betterment of society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.