198 resultados para Fluid-dynamic analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The evaluation of the hand function is an essential element within the clinical practice. The usual assessments are focus on the ability to perform activities of daily life. The inclusion of instruments to measure kinematic variables provides a new approach to the assessment. Inertial sensors adapted to the hand could be used as a complementary instrument to the traditional assessment. Material: clinimetric assessment (Upper Limb Functional Index, Quick Dash), antrophometric variables (eight and weight), dynamometry (palm preasure) was taken. Functional analysis was made with Acceleglove system for the right hand and computer system. The glove has six acceleration sensor, one on each finger and another one on the reverse palm. Method Analytic, transversal approach. Ten healthy subject made six task on evaluation table (tripod pinch, lateral pinch and tip pinch, extension grip, spherical grip and power grip). Each task was made and measure three times, the second one was analyze for the results section. A Matlab script was created for the analysis of each movement and detection phase based on module vector. Results The module acceleration vector offers useful information of the hand function. The data analysis obtained during the performance of functional gestures allows to identify five different phases within the movement, three static phase and tow dynamic, each module vector was allied to one task. Conclusion Module vector variables could be used for the analysis of the different task made by the hand. Inertial sensor could be use as a complement for the traditional assessment system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an uncertainty quantification study of the performance analysis of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multi-purpose Small Power Unit. A deterministic 3D volume-averaged Computational Fluid Dynamics (CFD) solver is coupled with a non-statistical generalized Polynomial Chaos (gPC) representation based on a pseudo-spectral projection method. One of the advantages of this approach is that it does not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic and geometric fields. The stochastic results highlight the importance of the blade thickness and trailing edge tip radius on the total-to-static efficiency of the turbine compared to the angular velocity and trailing edge tip length. From a theoretical point of view, the use of the gPC representation on an arbitrary grid also allows the investigation of the sensitivity of the blade thickness profiles on the turbine efficiency. The gPC approach is also applied to coupled random parameters. The results show that the most influential coupled random variables are trailing edge tip radius coupled with the angular velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We incorporated a new Riemannian fluid registration algorithm into a general MRI analysis method called tensor-based morphometry to map the heritability of brain morphology in MR images from 23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were fluidly registered to a common template. Voxelwise Jacobian determinants were computed from the deformation fields to assess local volumetric differences across subjects. Heritability maps were computed from the intraclass correlations and their significance was assessed using voxelwise permutation tests. Lobar volume heritability was also studied using the ACE genetic model. The performance of this Riemannian algorithm was compared to a more standard fluid registration algorithm: 3D maps from both registration techniques displayed similar heritability patterns throughout the brain. Power improvements were quantified by comparing the cumulative distribution functions of the p-values generated from both competing methods. The Riemannian algorithm outperformed the standard fluid registration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a numerical study of the response of axially loaded concrete filled steel tube (CFST) columns under lateral impact loading using explicit non-linear finite element techniques. The aims of this paper are to evaluate the vulnerability of existing columns to credible impact events as well as to contribute new information towards the safe design of such vulnerable columns. The model incorporates concrete confinement, strain rate effects of steel and concrete, contact between the steel tube and concrete and dynamic relaxation for pre-loading, which is a relatively recent method for applying a pre-loading in the explicit solver. The finite element model was first verified by comparing results with existing experimental results and then employed to conduct a parametric sensitivity analysis. The effects of various structural and load parameters on the impact response of the CFST column were evaluated to identify the key controlling factors. Overall, the major parameters which influence the impact response of the column are the steel tube thickness to diameter ratio, the slenderness ratio and the impact velocity. The findings of this study will enhance the current state of knowledge in this area and can serve as a benchmark reference for future analysis and design of CFST columns under lateral impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we illustrate a set of features of the Apromore process model repository for analyzing business process variants. Two types of analysis are provided: one is static and based on differences on the process control flow, the other is dynamic and based on differences in the process behavior between the variants. These features combine techniques for the management of large process model collections with those for mining process knowledge from process execution logs. The tool demonstration will be useful for researchers and practitioners working on large process model collections and process execution logs, and specifically for those with an interest in understanding, managing and consolidating business process variants both within and across organizational boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left – 100mmHg and right – 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates a pilot desalination system which consists of a direct expansion solar assisted heat pump (DXSAHP) coupled to a single-effect evaporator unit. The working fluid used is R134a and distillate is obtained via falling film evaporation and flashing in the unit. Experiments have been conducted in both day and night meteorological conditions in Singapore and the effects of solar irradiation and compressor speed have been studied against the system performance. From the experiments, the Performance Ratio (PR) obtained ranges from 0.43 to 0.88, the average Coefficient of Performance (COP) was 8 and the highest distillate production recorded was 1.38 kg/h

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Elevated dynamic plantar pressures are a consistent finding in diabetes patients with peripheral neuropathy with implications for plantar foot ulceration. This meta-analysis aimed to compare the plantar pressures of diabetes patients that had peripheral neuropathy and those with neuropathy with active or previous foot ulcers. Methods Published articles were identified from Medline via OVID, CINAHL, SCOPUS, INFORMIT, Cochrane Central EMBASE via OVID and Web of Science via ISI Web of Knowledge bibliographic databases. Observational studies reporting barefoot dynamic plantar pressure in adults with diabetic peripheral neuropathy, where at least one group had a history of plantar foot ulcers were included. Interventional studies, shod plantar pressure studies and studies not published in English were excluded. Overall mean peak plantar pressure (MPP) and pressure time integral (PTI) were primary outcomes. The six secondary outcomes were MPP and PTI at the rear foot, mid foot and fore foot. The protocol of the meta-analysis was published with PROPSERO, (registration number CRD42013004310). Results Eight observational studies were included. Overall MPP and PTI were greater in diabetic peripheral neuropathy patients with foot ulceration compared to those without ulceration (standardised mean difference 0.551, 95% CI 0.290–0.811, p<0.001; and 0.762, 95% CI 0.303–1.221, p = 0.001, respectively). Sub-group analyses demonstrated no significant difference in MPP for those with neuropathy with active ulceration compared to those without ulcers. A significant difference in MPP was found for those with neuropathy with a past history of ulceration compared to those without ulcers; (0.467, 95% CI 0.181– 0.753, p = 0.001). Statistical heterogeneity between studies was moderate. Conclusions Plantar pressures appear to be significantly higher in patients with diabetic peripheral neuropathy with a history of foot ulceration compared to those with diabetic neuropathy without a history of ulceration. More homogenous data is needed to confirm these findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in optical and fluorescent protein technology have rapidly raised expectations in cell biology, allowing quantitative insights into dynamic intracellular processes like never before. However, quantitative live-cell imaging comes with many challenges including how best to translate dynamic microscopy data into numerical outputs that can be used to make meaningful comparisons rather than relying on representative data sets. Here, we use analysis of focal adhesion turnover dynamics as a straightforward specific example on how to image, measure, and analyze intracellular protein dynamics, but we believe this outlines a thought process and can provide guidance on how to understand dynamic microcopy data of other intracellular structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.