287 resultados para Construction process improvement
Resumo:
In projecting change for the critical Australian construction industry, the CRC for Construction Innovation envisions a culture of self improvement through applied research and technology transfer. Construction Innovation is driving research outcomes into business practice in areas such as innovativeness, sustainability, procurement, project diagnostics and site safety. The group has also led the formation of an international alliance to ensure its activities are hitting the mark nationally and internationally. Through initiatives like these, the CRC for Construction Innovation is already providing a potent vehicle for change.
Resumo:
The construction industry demands priority from all governments because it impacts economically and socially on all citizens. A number of recent studies have identified inefficiencies in the Australian construction industry by modelling the building process. A culture of reform supported by industry and government is now emerging in the industry – one in which alternate forms of project delivery are being trialed. The Australian Building and Construction Industry Action Agenda brought together industry and government to identify actions necessary to lift Australia’s innovative and knowledge creating capacity at the sector level. A central activity under this Action Agenda was dissemination of information relating to industry best practice initiatives in innovation, project delivery and the use of information technology. Government and industry identified project alliance contracting and more advanced information technology as means to increase efficiency in construction as part of a new innovative procurement environment.
Resumo:
The construction of a Lunar Base is seen as achievable. The paper provides a useful summary of challenges facing pioneers of lunar base construction. It highlights important aspects of the location and use of the facility, the local environment, the human physiological adaptation process, and a principal concern for the construction industry—construction materials and methods required to erect the facility. Specific emphasis is placed on the latter two major issues. The authors believe that a lunar base will be built, operated and maintained by humans. It may be the next generation that carry out these dreams, but it is research of the type reported in this paper that will make these dreams a reality.
Resumo:
Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
4D simulation, building information modeling, virtual construction, computer simulation and virtual prototyping are emerging topics in the building construction industry. These techniques not only relate to the buildings themselves, but can also be applied to other forms of construction, including bridges. Since bridge construction is a complex process involving multiple types of plant and equipment, applying such virtual methods benefits the understanding of all parties in construction practice. This paper describes the relationship between temporary platforms, plant and equipment resources and a proposed-built model in the construction planning and use of Virtual Prototyping Simulation (VPS) to implement different construction scenarios in order to help planners identify an optimal construction plan. A case study demonstrates the use of VPS integrated with temporary platform design and plant and equipment-resource allocation to generate different construction scenarios.
Resumo:
Design-build (DB) system is well-known to be a popular and effective delivery method of construction work worldwide. It has been demonstrated as superior to the traditional delivery system in regards to time and cost performance. However, it suffers a major flaw, in that the performance of project quality cannot be guaranteed. This paper aims to investigate the underlying factors attributing to the poor quality performance of design-build projects in Queensland. Five major factors were first identified through a comprehensive literature review, which relate to (1) project briefing and scope definition, (2) client’s role and responsibility, (3) procurement selection, (4) contractor’s incentive, and (5) design document quality. A questionnaire survey with 127 DB professionals was conducted to determine how these factors affect various quality criteria, i.e. functional quality, architectural quality, technical quality, workmanship quality, client satisfaction and overall quality. With the architectural quality reduced greatly, the research findings reveal that the DB projects in Queensland have the reduced overall quality compared with traditional projects. The impacts of different factors on the quality performance of DB projects have been closely examined and summarized. The research findings will facilitate project stakeholder’s better understanding of the delivery process of the DB system and provide guidelines to improve the quality performance.
Resumo:
The complex design process of airport terminal needs to support a wide range of changes in operational facilities for both usual and unusual/emergency events. Process model describes how activities within a process are connected and also states logical information flow of the various activities. The traditional design process overlooks the necessity of information flow from the process model to the actual building design, which needs to be considered as a integral part of building design. The current research introduced a generic method to obtain design related information from process model to incorporate with the design process. Appropriate integration of the process model prior to the design process uncovers the relationship exist between spaces and their relevant functions, which could be missed in the traditional design approach. The current paper examines the available Business Process Model (BPM) and generates modified Business Process Model(mBPM) of check-in facilities of Brisbane International airport. The information adopted from mBPM then transform into possible physical layout utilizing graph theory.
Resumo:
Work in the Australian construction industry is fraught with risk and the potential for serious harm. The industry is consistently placed within the three most hazardous industries to work along with other industries such as mining and transport (National Occupational Health and Safety Commission, 2003). In the 2001 to 2002 period, construction work killed 39 people and injured 13,250 more. Hence, more effort is required to reduce the injury rate and maximise the value of the rehabilitation/back-to-work process.
Design and construction of fixed bed pyrolysis system and plum seed pyrolysis for bio-oil production
Resumo:
This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.
The use of virtual prototyping to rehearse the sequence of construction work involving mobile cranes
Resumo:
Purpose – Rehearsing practical site operations is without doubt one of the most effective methods for minimising planning mistakes, because of the learning that takes place during the rehearsal activity. However, real rehearsal is not a practical solution for on-site construction activities, as it not only involves a considerable amount of cost but can also have adverse environmental implications. One approach to overcoming this is by the use of virtual rehearsals. The purpose of this paper is to investigate an approach to simulation of the motion of cranes in order to test the feasibility of associated construction sequencing and generate construction schedules for review and visualisation. Design/methodology/approach – The paper describes a system involving two technologies, virtual prototyping (VP) and four-dimensional (4D) simulation, to assist construction planners in testing the sequence of construction activities when mobile cranes are involved. The system consists of five modules, comprising input, database, equipment, process and output, and is capable of detecting potential collisions. A real-world trial is described in which the system was tested and validated. Findings – Feedback from the planners involved in the trial indicated that they found the system to be useful in its present form and that they would welcome its further development into a fully automated platform for validating construction sequencing decisions. Research limitations/implications – The tool has the potential to provide a cost-effective means of improving construction planning. However, it is limited at present to the specific case of crane movement under special consideration. Originality/value – This paper presents a large-scale, real life case of applying VP technology in planning construction processes and activities.
Resumo:
The effect of resource management on the building design process directly influences the development cycle time and success of construction projects. This paper presents the information constraint net (ICN) to represent the complex information constraint relations among design activities involved in the building design process. An algorithm is developed to transform the information constraints throughout the ICN into a Petri net model. A resource management model is developed using the ICN to simulate and optimize resource allocation in the design process. An example is provided to justify the proposed model through a simulation analysis of the CPN Tools platform in the detailed structural design. The result demonstrates that the proposed approach can obtain the resource management and optimization needed for shortening the development cycle and optimal allocation of resources.
Resumo:
Numerous different and sometimes discrepant interests can be affected, both positively and negatively, throughout the course of a major infrastructure and construction (MIC) project. Failing to address and meet the concerns and expectations of the stakeholders involved has resulted in many project failures. One way to address this issue is through a participatory approach to project decision making. Whether the participation mechanism is effective or not depends largely on the client/owner. This paper provides a means of systematically evaluating the effectiveness of the public participation exercise, or even the whole project, through the measurement of stakeholder satisfaction. Since the process of satisfaction measurement is complicated and uncertain, requiring approximate reasoning involving human intuition, a fuzzy approach is adopted. From this, a multi-factor hierarchical fuzzy comprehensive evaluation model is established to facilitate the evaluation of satisfaction in both single stakeholder group and overall MIC project stakeholders.
Resumo:
Building prefabrication is known as Industrialised Building Systems (IBS) in Malaysia. This construction method possesses unique characteristics that are central to sustainable construction. For example, offsite construction enables efficient management of construction wastage by identifying major causes of waste arising during both the design and construction stages. These causes may then be eliminated by the improvement process in IBS component's manufacturing. However, current decisions on using IBS are typically financial driven and hinder the wider ranged adoption. In addition, current IBS misconceptions and the failure of rating schemes in evaluating the sustainability of IBS affect its implementation. A new approach is required to provide better understanding on the sustainability potential of IBS among stakeholders. Such approach should also help project the outcomes of each levels of decision-making to respond to social, economy and environmental challenges. This paper presents interim findings of research aimed at developing a framework for sustainable IBS development and suggests a more holistic approach to achieve sustainability. A framework of embedding sustainability factors is considered in three main phases of IBS construction; 1) Pre-construction, 2) Construction and 3) Post-construction phase. SWOT analysis was used to evaluate the strengths, weaknesses, opportunities and threats involved in the IBS implementations. The action plans are formulated from the analysis of sustainable objectives. This approach will show where and how sustainability should be integrated to improve IBS construction. A mix of quantitative and qualitative methodology was used in this research to explore the potential of IBS in integrating sustainability. The tools used in the study are questionnaires and semi-structured interviews. Outcomes from these tools lead to the identification of viable approaches involving 18 critical factors to improve sustainability in IBS constructions. Finally, guidelines for decision-making are being developed to provide a useful source of information and support to mutual benefit of the stakeholders in integrating sustainability issues and concepts into IBS applications.