253 resultados para Caryocorbula swiftiana, anterior-posterior shell length
Resumo:
PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.
Resumo:
Purpose: To investigate the changes in axial length with the combined effect of accommodation and angle of gaze (convergence and downward gaze) over 5 minutes in groups of myopes and emmetropes. Methods: A total of 31 subjects (nine emmetropes, 10 low myopes, and 12 moderate to high myopes) aged from 18 to 31 years were recruited. To measure ocular biometrics in inferonasal gaze with accommodation, an optical biometer (Lenstar LS900) was inclined on a tilt and height adjustable stage, with the subject’s chinrest mounted on a rotary stage to induce various levels of convergence by rotation of the subject’s head in primary or downward gaze. Initially, the subjects performed a distance viewing task in primary gaze for 10 minutes to provide a ‘wash-out’ period for prior visual tasks, and then the subject’s axial length and ocular biometrics were measured in nine different combinations of gaze/accommodation over 5 minutes. These nine sessions for all gaze measurements (i.e. three levels of accommodation 9 three levels of convergence) were completed across 3 days of testing (one accommodation condition on each day).The nine combinations of gaze/accommodation were based on those required to view the centre, right and left edges of a distant TV at 6 m in primary gaze, an intermediate task (i.e. computer at 50 cm in 10° downward gaze) and a near task (i.e. reading A4 page at 20 cm in 20° downward gaze). Subjects were wearing a custom built three-axes head tracker throughout the experiment that monitored subjects’ relative head movements (roll, pitch and yaw) during measurements. Results: A significant increase in axial length occurred with the combined effect of accommodation, convergence and downward gaze (repeated measures ANOVA, p < 0.001), with the greatest axial elongation during the near task in downward gaze with convergence (i.e. downward 20°/inward 33°, with 5 D accommodation) (mean change 33 ± 13 lm, after 5 minutes task) followed by the intermediate task (i.e. downward 10°/inward 25°, with 2 D accommodation) (mean change 14 ± 11 lm, after 5 minutes task).Changes in axial length for the distance task (i.e. primary gaze/9° convergence, with 0.16 D accommodation) were not statistically significant (mean change 4 ± 8 lm, after 5 minutes task, p > 0.05). Moderate to high myopes had a greater change in the axial length (mean change 40 ± 11 lm after 5 minutes of near task) than that of emmetropes (mean change 29 ± 15 lm after 5 minutes of near task) and low myopes (mean change 29 ± 16 lm after 5 minutes of near task) associated with time (p = 0.02) and accommodation by time (p = 0.03). Conclusions: The combination of accommodation, convergence and downward angle has a significant short term effect on axial length over time. The near task in downward gaze with convergence caused a greater change in axial length than the intermediate and distant visual tasks. The greater axial elongation measured in the infero-nasal direction with accommodation is most likely associated with a combination of biomechanical factors such as, extraocular muscle forces and ciliary muscle contraction.
Resumo:
Advanced grid stiffened composite cylindrical shell is widely adopted in advanced structures due to its exceptional mechanical properties. Buckling is a main failure mode of advanced grid stiffened structures in engineering, which calls for increasing attention. In this paper, the buckling response of advanced grid stiffened structure is investigated by three different means including equivalent stiffness model, finite element model and a hybrid model (H-model) that combines equivalent stiffness model with finite element model. Buckling experiment is carried out on an advanced grid stiffened structure to validate the efficiency of different modeling methods. Based on the comparison, the characteristics of different methods are independently evaluated. It is arguable that, by considering the defects of material, finite element model is a suitable numerical tool for the buckling analysis of advanced grid stiffened structures.
Resumo:
INTRODUCTION: Increasing health care costs, limited resources and increased demand makes cost effective and cost-efficient delivery of Adolescent Idiopathic Scoliosis (AIS) management paramount. Rising implant costs in deformity correction surgery have prompted analysis of whether high implant densities are justified. The objective of this study was to analyse the costs of thoracoscopic scoliosis surgery, comparing initial learning curve costs with those of the established technique and to the costs involved in posterior instrumented fusion from the literature. METHODS: 189 consecutive cases from April 2000 to July 2011 were assessed with a minimum of 2 years follow-up. Information was gathered from a prospective database covering perioperative factors, clinical and radiological outcomes, complications and patient reported outcomes. The patients were divided into three groups to allow comparison; 1. A learning curve cohort, 2. An intermediate cohort and 3. A third cohort of patients, using our established technique. Hospital finance records and implant manufacturer figures were corrected to 2013 costs. A literature review of AIS management costs and implant density in similar curve types was performed. RESULTS: The mean pre-op Cobb angle was 53°(95%CI 0.4) and was corrected postop to mean 22.9°(CI 0.4). The overall complication rate was 20.6%, primarily in the first cohort, with a rate of 5.6% in the third cohort. The average total costs were $46,732, operating room costs of $10,301 (22.0%) and ICU costs of $4620 (9.8%). The mean number of screws placed was 7.1 (CI 0.04) with a single rod used for each case giving average implant costs of $14,004 (29.9%). Comparison of the three groups revealed higher implant costs as the technique evolved to that in use today, from $13,049 in Group 1 to $14577 in Group 3 (P<0.001). Conversely operating room costs reduced from $10,621 in Group 1 to $7573 (P<0.001) in Group 3. ICU stay was reduced from an average of 1.2 to 0 days. In-patient stay was significantly (P=0.006) lower in Groups 2 and 3 (5.4 days) than Group 1 (5.9 days) (i.e. a reduction in cost of approximately $6,140). CONCLUSIONS: The evolution of our thoracoscopic anterior scoliosis correction has resulted in an increase in the number of levels fused and reduction in complication rate. Implant costs have risen as a result, however, there has been a concurrent decrease in those costs generated by operating room use, ICU and in-patient stay with increasing experience. Literature review of equivalent curve types treated posteriorly shows similar perioperative factors but higher implant density, 69-83% compared to the 50% in this study. Thoracoscopic Scoliosis surgery presents a low density, reliable, efficient and effective option for selected curves. A cost analysis of Thoracoscopic Scoliosis Surgery using financial records and a prospectively collected database of all patients since 2000, demonstrating a clear cost advantage compared to equivalent posterior instrumentation and fusion.
Resumo:
Aims Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. Methods A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. Results ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). Conclusions ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature.
Resumo:
Objective: To examine the effects of personal and community characteristics, specifically race and rurality, on lengths of state psychiatric hospital and community stays using maximum likelihood survival analysis with a special emphasis on change over a ten year period of time. Data Sources: We used the administrative data of the Virginia Department of Mental Health, Mental Retardation, and Substance Abuse Services (DMHMRSAS) from 1982-1991 and the Area Resources File (ARF). Given these two sources, we constructed a history file for each individual who entered the state psychiatric system over the ten year period. Histories included demographic, treatment, and community characteristics. Study Design: We used a longitudinal, population-based design with maximum likelihood estimation of survival models. We presented a random effects model with unobserved heterogeneity that was independent of observed covariates. The key dependent variables were lengths of inpatient stay and subsequent length of community stay. Explanatory variables measured personal, diagnostic, and community characteristics, as well as controls for calendar time. Data Collection: This study used secondary, administrative, and health planning data. Principal Findings: African-American clients leave the community more quickly than whites. After controlling for other characteristics, however, race does not affect hospital length of stay. Rurality does not affect length of community stays once other personal and community characteristics are controlled for. However, people from rural areas have longer hospital stays even after controlling for personal and community characteristics. The effects of time are significantly smaller than expected. Diagnostic composition effects and a decrease in the rate of first inpatient admissions explain part of this reduced impact of time. We also find strong evidence for the existence of unobserved heterogeneity in both types of stays and adjust for this in our final models. Conclusions: Our results show that information on client characteristics available from inpatient stay records is useful in predicting not only the length of inpatient stay but also the length of the subsequent community stay. This information can be used to target increased discharge planning for those at risk of more rapid readmission to inpatient care. Correlation across observed and unobserved factors affecting length of stay has significant effects on the measurement of relationships between individual factors and lengths of stay. Thus, it is important to control for both observed and unobserved factors in estimation.
Resumo:
Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.
Resumo:
We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.
Resumo:
It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.
Resumo:
The possibility of initial stage control of the elemental composition and core/shell structure of binary SiC quantum dots by optimizing temporal variation of Si and C incoming fluxes and surface temperatures is shown via hybrid numerical simulations. Higher temperatures and influxes encourage the formation of a stoichiometric outer shell over a small carbon-enriched core, whereas lower temperatures result in a larger carbon-enriched core, Si-enriched undershell, and then a stoichiometric SiC outer shell. This approach is generic and is applicable to a broad range of semiconductor materials and nanofabrication techniques. © 2007 American Institute of Physics.
Resumo:
The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.
Ways to increase the length of single wall carbon nanotubes in a magnetically enhanced arc discharge
Resumo:
Ability to control the properties of single-wall nanotubes produced in the arc discharge is important for many practical applications. Our experiments suggest that the length and purity of single-wall nanotubes significantly increase when the magnetic field is applied to the arc discharge. A model of a single wall carbon nanotube interaction and growth in the thermal plasma was developed which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge and energy transfer processes between nanotube and plasma. The numerical simulations based on Monte-Carlo technique were performed, which explain an increase of the nanotubes produced in the magnetic field - enhanced arc discharge.
Resumo:
This paper investigates how neuronal activation for naming photographs of objects is influenced by the addition of appropriate colour or sound. Behaviourally, both colour and sound are known to facilitate object recognition from visual form. However, previous functional imaging studies have shown inconsistent effects. For example, the addition of appropriate colour has been shown to reduce antero-medial temporal activation whereas the addition of sound has been shown to increase posterior superior temporal activation. Here we compared the effect of adding colour or sound cues in the same experiment. We found that the addition of either the appropriate colour or sound increased activation for naming photographs of objects in bilateral occipital regions and the right anterior fusiform. Moreover, the addition of colour reduced left antero-medial temporal activation but this effect was not observed for the addition of object sound. We propose that activation in bilateral occipital and right fusiform areas precedes the integration of visual form with either its colour or associated sound. In contrast, left antero-medial temporal activation is reduced because object recognition is facilitated after colour and form have been integrated.
Resumo:
In this study we investigate previous claims that a region in the left posterior superior temporal sulcus (pSTS) is more activated by audiovisual than unimodal processing. First, we compare audiovisual to visual-visual and auditory-auditory conceptual matching using auditory or visual object names that are paired with pictures of objects or their environmental sounds. Second, we compare congruent and incongruent audiovisual trials when presentation is simultaneous or sequential. Third, we compare audiovisual stimuli that are either verbal (auditory and visual words) or nonverbal (pictures of objects and their associated sounds). The results demonstrate that, when task, attention, and stimuli are controlled, pSTS activation for audiovisual conceptual matching is 1) identical to that observed for intramodal conceptual matching, 2) greater for incongruent than congruent trials when auditory and visual stimuli are simultaneously presented, and 3) identical for verbal and nonverbal stimuli. These results are not consistent with previous claims that pSTS activation reflects the active formation of an integrated audiovisual representation. After a discussion of the stimulus and task factors that modulate activation, we conclude that, when stimulus input, task, and attention are controlled, pSTS is part of a distributed set of regions involved in conceptual matching, irrespective of whether the stimuli are audiovisual, auditory-auditory or visual-visual.
Resumo:
Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.