278 resultados para Amylase production
Resumo:
The purpose of this study is to discover the significant factors causing the bubble defect on the outsoles manufactured by the Case Company. The bubble defect occurs approximately 1.5 per cent of the time or in 36 pairs per day. To understand this problem, experimental studies are undertaken to identify various factors such as injector temperature, mould temperature; that affects the production of waste. The work presented in this paper comprises a review of the relevant literature on the Six Sigma DMAIC improvement process, quality control tools, and the design of the experiments. After the experimentation following the Six Sigma process, the results showed that the defect occurred in approximately 0.5 per cent of the products or in 12 pairs per day; this decreased the production cost from 6,120 AUD per month to 2,040 AUD per month. This research aimed to reduce the amount of waste in men’s flat outsoles. Hence, the outcome of research presented in this paper should be used as a guide for applying the appropriate process for each type of outsole.
Resumo:
The efficiency of the nitrogen (N) application rates 0, 120, 180 and 240 kg N ha−1 in combination with low or medium water levels in the cultivation of winter wheat (Triticum aestivum L.) cv. Kupava was studied for the 2005–2006 and 2006–2007 growing seasons in the Khorezm region of Uzbekistan. The results show an impact of the initial soil Nmin (NO3-N + NH4-N) levels measured at wheat seeding on the N fertilizer rates applied. When the Nmin content in the 0–50 cm soil layer was lower than 10 mg kg−1 during wheat seeding in 2005, the N rate of 180 kg ha−1 was found to be the most effective for achieving high grain yields of high quality. With a higher Nmin content of about 30 mg kg−1 as was the case in the 2006 season, 120 kg N ha−1 was determined as being the technical and economical optimum. The temporal course of N2O emissions of winter wheat cultivation for the two water-level studies shows that emissions were strongly influenced by irrigation and N-fertilization. Extremely high emissions were measured immediately after fertilizer application events that were combined with irrigation events. Given the high impact of N-fertilizer and irrigation-water management on N2O emissions, it can be concluded that present N-management practices should be modified to mitigate emissions of N2O and to achieve higher fertilizer use efficiency.
Resumo:
Agriculture is responsible for a significant proportion of total anthropogenic greenhouse gas emissions (perhaps 18% globally), and therefore has the potential to contribute to efforts to reduce emissions as a means of minimising the risk of dangerous climate change. The largest contributions to emissions are attributed to ruminant methane production and nitrous oxide from animal waste and fertilised soils. Further, livestock, including ruminants, are an important component of global and Australian food production and there is a growing demand for animal protein sources. At the same time as governments and the community strengthen objectives to reduce greenhouse gas emissions, there are growing concerns about global food security. This paper provides an overview of a number of options for reducing methane and nitrous oxide emissions from ruminant production systems in Australia, while maintaining productivity to contribute to both objectives. Options include strategies for feed modification, animal breeding and herd management, rumen manipulation and animal waste and fertiliser management. Using currently available strategies, some reductions in emissions can be achieved, but practical commercially available techniques for significant reductions in methane emissions, particularly from extensive livestock production systems, will require greater time and resource investment. Decreases in the levels of emissions from these ruminant systems (i.e., the amount of emissions per unit of product such as meat) have already been achieved. However, the technology has not yet been developed for eliminating production of methane from the rumen of cattle and sheep digesting the cellulose and lignin-rich grasses that make up a large part of the diet of animals grazing natural pastures, particularly in arid and semi-arid grazing lands. Nevertheless, the abatement that can be achieved will contribute significantly towards reaching greenhouse gas emissions reduction targets and research will achieve further advances.
Resumo:
This chapter uses as a beginning point Walter Benjamin’s famous essay ‘The work of art in the age of technological reproducibility’(1935/2008) to discuss Media Arts education. It locates ‘Media Arts’ at the intersection of three key ideas: 1) media arts products as objects for popular and everyday consumption and intervention by individuals and broader audiences; 2) materiality and how individuals use their bodies and technologies to produce, combine and share digital materials and; 3) the construction of aesthetic knowledge and how this relates to critical and conceptual thinking. These ideas are discussed in the context of the development of curriculum for students at all ages of schooling, with specific attention given to the knowledge and skills students might develop within Media Arts education in primary schools. Examples from a Media Arts project in a primary school in Australia – where a new Media Arts national curriculum has been developed –are provided to illustrate the key ideas discussed in the chapter.
Resumo:
In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.
Resumo:
Supply chains are the core of most industrial networks in which your business operates. They provide the pipeline through which the products and services flow from supplier to customer across each element within the business activity system. Global supply chain relationships have become the basis for many industries with an international network of firms engaged in the supply of goods and services that must be produced to quality standards in one country and delivered just-in-time for assembly or integration into further production processes in another country, frequently many thousands of miles apart. This topic examines the nature of supply chain management and their role in strategic networking. The previous learning tasks have focused on having the correct internal mechanism to effectively manage the inputs and outputs of the organisation by implementing an effective and transparent management system. This learning task takes a look at how management intent strategy and innovation are used to measure the external factors that influence the overall performance of the organisation and develop new strategies by understanding the business cycle and the people within your market environment.
Resumo:
Synthesis of metal borides is typically undertaken at high temperature using direct combinations of elemental starting materials[1]. Techniques include carbothermal reduction using elemental carbon, metals, metal oxides and B2O3[2] or reaction between metal chlorides and boron sources[3]. These reactions generally require temperatures greater than 1200oC and are not readily suitable for an industrial setting nor scalable to bulk production.
Resumo:
An increasing concern over the sustainability credentials of food and fiber crops require that farmers and their supply chain partners have access to appropriate and industry-friendly tools to be able to measure and improve the outcomes. This article focuses on one of the sustainability indicators, namely, greenhouse gas (GHG) emissions, and nine internationally accredited carbon footprint calculators were identified and compared on an outcomes basis against the same cropping data from a case study cotton farm. The purpose of this article is to identify the most “appropriate” methodology to be applied by cotton suppliers in this regard. From the analysis of the results, we subsequently propose a new integrated model as the basis for an internationally accredited carbon footprint tool for cotton and show how the model can be applied to evaluate the emission outcomes of different farming practices.
Resumo:
As urbanisation of the global population has increased above 50%, growing food in urban spaces increases in importance, as it can contribute to food security, reduce food miles, and improve people’s physical and mental health. Approaching the task of growing food in urban environments is a mixture of residential growers and groups. Permablitz Brisbane is an event-centric grassroots community that organises daylong ‘working bee’ events, drawing on permaculture design principles in the planning and design process. Permablitz Brisbane provides a useful contrast from other location-centric forms of urban agriculture communities (such as city farms or community gardens), as their aim is to help encourage urban residents to grow their own food. We present findings and design implications from a qualitative study with members of this group, using ethnographic methods to engage with and understand how this group operates. Our findings describe four themes that include opportunities, difficulties, and considerations for the creation of interventions by Human-Computer Interaction (HCI) designers.
Resumo:
OBJECTIVE The effects of free fatty acids (FFA), leptin, tumour necrosis factor (TNF) alpha and body fat distribution on in vivo oxidation of a glucose load were studied in two South African ethnic groups. DESIGN AND MEASUREMENTS Anthropometric and various metabolic indices were measured at fasting and during a 7h oral glucose tolerance test (OGTT). Body composition was measured using bioelectrical impedance analysis and subcutaneous and visceral fat mass was assessed using a five- and two-level CT-scan respectively. Glucose oxidation was evaluated by measuring the ratio of (13)CO(2) to (12)CO(2) in breath following ingestion of 1-(13)C-labelled glucose. SUBJECTS Ten lean black women (LBW), ten obese black women (OBW), nine lean white women (LWW) and nine obese white women (OWW) were investigated after an overnight fast. RESULTS Visceral fat levels were significantly higher (P < 0.01) in obese white than black women, despite similar body mass indexes (BMIs). There were no ethnic differences in glucose oxidation however; in the lean subjects of both ethnic groups the area under the curve (AUC) was higher than in obese subjects (P < 0.05 for both) and was found to correlate negatively with weight (r = -0.69, P < 0.01) after correcting for age. Basal TNF alpha concentrations were similar in all groups. Percentage suppression of FFAs at 30 min of the OCTT was 24 +/- 12% in OWW and - 38 +/- 23% (P < 0.05) in OBW, ie the 30 min FFA level was higher than the fasting level in the latter group. AUC for FFAs during the late postprandial period (120 - 420 min) was significantly higher in OWW than OBW (P < 0.01) and LWW (P < 0.01) and correlated positively with visceral fat mass independent of age (r = 0.78, P < 0.05) in the OWW only. Leptin levels were higher (P < 0.01) both at fasting and during the course of the OCTT in obese women from both ethnic groups compared to the lean women. CONCLUSIONS Glucose oxidation is reduced in obese subjects of both ethnic groups; inter- and intra-ethnic differences were observed in visceral fat mass and FFA production and it is possible that such differences may play a role in the differing prevalences of obesity-related disorders that have been reported in these two populations.
Resumo:
Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing.
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.