195 resultados para Abandoned Vehicles.
Resumo:
Drawing on two studies within a larger program of research into scooter and moped safety in Queensland, Australia, some key safety concerns specific to the use of these vehicles are discussed. A five phase observational study is used to identify distribution of powered two-wheeler (PTW) types in the city centre of Brisbane, Australia’s third largest city. Data were first collected in August 2008, and thereafter at six-monthly intervals. Stationary PTWs were directly observed in designated parking areas. Four focus groups involving 23 Brisbane riders were held in March 2009, aiming to explore perspectives on safety and transport planning in a semi-structured format. Information gathered in the focus groups informed development of a questionnaire targeting a larger sample of scooter and moped riders. The observations made to date indicate that 36% of all PTWs parked in Brisbane’s inner city are either mopeds or larger scooters, with the remaining 64% accounted for by motorcycles (n = 2037). These data suggest that mopeds and scooters are a significant transport mode in Brisbane, yet little is known about their safety relative to that of motorcycles. In focus groups, main motivating factors for scooter or moped use included parking availability, traffic congestion, cost, time-efficiency and enjoyment. Moped riders were generally younger and less experienced than other scooter riders, less likely to wear protective clothing, and less likely to have undertaken rider training. The focus groups have helped to identify some particular safety concerns regarding moped use in a jurisdiction requiring no motorcycle licence or rider training.
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
This literature review examines the relationship between traffic lane widths on the safety of road users. It focuses on the impacts of lane widths on motor vehicle behaviour and cyclists’ safety. The review commenced with a search of available databases. Peer reviewed articles and road authority reports were reviewed, as well as current engineering guidelines. Research shows that traffic lane width influences drivers’ perceived difficulty of the task, risk perception and possibly speed choices. Total roadway width, and the presence of onroad cycling facilities, influence cyclists’ positioning on the road. Lateral displacement between bicycles and vehicles is smallest when a marked bicycle facility is present. Reduced motor vehicle speeds can significantly improve the safety of vulnerable road users, particularly pedestrians and cyclists. It has been shown that if road lane widths on urban roads were reduced, through various mechanisms, it could result in a safety environment for all road users.
Resumo:
Objective • Feasibility programme for on-board mass (OBM) monitoring of heavy vehicles (HVs) • Australian road authorities through Transport Certification Australia (TCA) • Accuracy of contemporary, commercially-available OBM units in Australia • Results need to be addressed/incorporated into specifications for Stage 2 of Intelligent Access Program (IAP) by Transport Certification Australia
Resumo:
Typical quadrotor aerial robots used in research weigh inlMMLBox and carry payloads measured in hundreds of grams. Several obstacles in design and control must be overcome to cater for expected industry demands that push the boundaries of existing quadrotor performance. The X-4 Flyer, a 4 kg quadrotor with a 1 kg payload, is intended to be prototypical of useful commercial quadrotors. The custom-built craft uses tuned plant dynamics with an onboard embedded attitude controller to stabilise flight. Independent linear SISO controllers were designed to regulate flyer attitude. The performance of the system is demonstrated in indoor and outdoor flight.
Resumo:
Fast thrust changes are important for authoritive control of VTOL micro air vehicles. Fixed-pitch rotors that alter thrust by varying rotor speed require high-bandwidth control systems to provide adequate performace. We develop a feedback compensator for a brushless hobby motor driving a custom rotor suitable for UAVs. The system plant is identified using step excitation experiments. The aerodynamic operating conditions of these rotors are unusual and so experiments are performed to characterise expected load disturbances. The plant and load models lead to a proportional controller design capable of significantly decreasing rise-time and propagation of disturbances, subject to bus voltage constraints.
Resumo:
Mining is the process of extracting mineral resources from the Earth for commercial value. It is an ancient human activity which can be traced back to Palaeolithic times (43 000 years ago), where for example the mineral hematite was mined to produce the red pigment ochre. The importance of many mined minerals is reflected in the names of the major milestones in human civilizations: the stone, copper, bronze, and iron ages. Much later coal provided the energy that was critical to the industrial revolution and still underpins modern society, creating 38% of world energy generation today. Ancient mines used human and later animal labor and broke rock using stone tools, heat, and water, and later iron tools. Today’s mines are heavily mechanized with large diesel and electrically powered vehicles, and rock is broken with explosives or rock cutting machines.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
Performing reliable localisation and navigation within highly unstructured underwater coral reef environments is a difficult task at the best of times. Typical research and commercial underwater vehicles use expensive acoustic positioning and sonar systems which require significant external infrastructure to operate effectively. This paper is focused on the development of a robust vision-based motion estimation technique using low-cost sensors for performing real-time autonomous and untethered environmental monitoring tasks in the Great Barrier Reef without the use of acoustic positioning. The technique is experimentally shown to provide accurate odometry and terrain profile information suitable for input into the vehicle controller to perform a range of environmental monitoring tasks.
Resumo:
The 5th International Conference on Field and Service Robotics (FSR05) was held in Port Douglas, Australia, on 29th - 31st July 2005, and brought together the worlds' leading experts in field and service automation. The goal of the conference was to report and encourage the latest research and practical results towards the use of field and service robotics in the community with particular focus on proven technology. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. Field robots are robots which operate in outdoor, complex, and dynamic environments. Service robots are those that work closely with humans, with particular applications involving indoor and structured environments. There are a wide range of topics presented in this issue on field and service robots including: Agricultural and Forestry Robotics, Mining and Exploration Robots, Robots for Construction, Security & Defence Robots, Cleaning Robots, Autonomous Underwater Vehicles and Autonomous Flying Robots. This meeting was the fifth in the series and brings FSR back to Australia where it was first held. FSR has been held every 2 years, starting with Canberra 1997, followed by Pittsburgh 1999, Helsinki 2001 and Lake Yamanaka 2003.
Resumo:
Starbug is an inexpensive, miniature autonomous underwater vehicle ideal for data collection and ecosystem surveys. Starbug is small enough to be launched by one person without the need for specialised equipment, such as cranes, and it operates with minimal to no human intervention. Starbug was one of the first autonomous underwater vehicles (AUVs) in the world where vision is the primary means of navigation and control. More details of Starbug can be found here: http://www.csiro.au/science/starbug.html
Resumo:
The highly unstructured nature of coral reef environments makes them difficult for current robotic vehicles to efficiently navigate. Typical research and commercial platforms have limited autonomy within these environments and generally require tethers and significant external infrastructure. This paper outlines the development of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments and presents experimental results illustrating the vehicle’s performance. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly low-cost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system.