208 resultados para 2d
Resumo:
Spontaneous emission (SE) of a Quantum emitter depends mainly on the transmission strength between the upper and lower energy levels as well as the Local Density of States (LDOS)[1]. When a QD is placed in near a plasmon waveguide, LDOS of the QD is increased due to addition of the non-radiative decay and a plasmonic decay channel to free space emission[2-4]. The slow velocity and dramatic concentration of the electric field of the plasmon can capture majority of the SE into guided plasmon mode (Гpl ). This paper focused on studying the effect of waveguide height on the efficiency of coupling QD decay into plasmon mode using a numerical model based on finite elemental method (FEM). Symmetric gap waveguide considered in this paper support single mode and QD as a dipole emitter. 2D simulation models are done to find normalized Гpl and 3D models are used to find probability of SE decaying into plasmon mode ( β) including all three decay channels. It is found out that changing gap height can increase QD-plasmon coupling, by up to a factor of 5 and optimally placed QD up to a factor of 8. To make the paper more realistic we briefly studied the effect of sharpness of the waveguide edge on SE emission into guided plasmon mode. Preliminary nano gap waveguide fabrication and testing are already underway. Authors expect to compare the theoretical results with experimental outcomes in the future
Resumo:
Vitamin D is synthesised in the skin through the action of UVB radiation (sunlight), and 25-hydroxy vitamin D (25OHD) measured in serum as a marker of vitamin D status. Several studies, mostly conducted in high latitudes, have shown an association between type 1 diabetes mellitus (T1DM) and low serum 25OHD. We conducted a case-control study to determine whether, in a sub-tropical environment with abundant sunlight (latitude 27.5°S), children with T1DM have lower serum vitamin D than children without diabetes. Fifty-six children with T1DM (14 newly diagnosed) and 46 unrelated control children participated in the study. Serum 25OHD, 1,25-dihydroxy vitamin D (1,25(OH)2D) and selected biochemical indices were measured. Vitamin D receptor (VDR) polymorphisms Taq1, Fok1, and Apa1 were genotyped. Fitzpatrick skin classification, self-reported daily hours of outdoor exposure, and mean UV index over the 35d prior to blood collection were recorded. Serum 25OHD was lower in children with T1DM (n=56) than in controls (n=46) [mean (95%CI)=78.7 (71.8-85.6) nmol/L vs. 91.4 (83.5-98.7) nmol/L, p=0.02]. T1DM children had lower self-reported outdoor exposure and mean UV exposure, but no significant difference in distribution of VDR polymorphisms. 25OHD remained lower in children with T1DM after covariate adjustment. Children newly diagnosed with T1DM had lower 1,25(OH)2D [median (IQR)=89 (68-122) pmol/L] than controls [121 (108-159) pmol/L, p=0.03], or children with established diabetes [137 (113-153) pmol/L, p=0.01]. Children with T1DM have lower 25OHD than controls, even in an environment of abundant sunlight. Whether low vitamin D is a risk factor or consequence of T1DM is unknown. © 2012 John Wiley & Sons A/S.
Resumo:
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
Resumo:
In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4′-hydroxy-6α-acetoxyanopterine (2), 4′-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7β-hydroxyanopterine (6), 7β,4′-dihydroxyanopterine (7), and 7β-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1–8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1–8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1–8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.
Resumo:
The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.
Resumo:
The tip of a scanning tunneling microscope (STM) can be used to dehydrogenate freely-diffusing tetrathienoanthracene (TTA) molecules on Cu(111), trapping the molecules into metal-coordinated oligomeric structures. The process proceeds at bias voltages above ∼3 V and produces organometallic structures identical to those resulting from the thermally-activated cross-coupling of a halogenated analogue. The process appears to be substrate dependent: no oligomerization was observed on Ag(111) or HOPG. This approach demonstrates the possibility of controlled synthesis and nanoscale patterning of 2D oligomer structures on selected surfaces.
Resumo:
Neutral capsular polysaccharides (CPSs) were isolated from Acinetobacter baumannii NIPH190, NIPH201, and NIPH615. The CPSs were found to contain common monosaccharides only and to be branched with a side-chain 1→3-linked β-d-glucopyranose residue. Structures of the oligosaccharide repeat units (K units) of the CPSs were elucidated by 1D and 2D 1H and 13C NMR spectroscopy. Novel CPS biosynthesis gene clusters, designated KL30, KL45, and KL48, were found at the K locus in the genome sequences of NIPH190, NIPH201, and NIPH615, respectively. The genetic content of each gene cluster correlated with the structure of the CPS unit established, and therefore, the capsular types of the strains studied were designated as K30, K45, and K48, respectively. The initiating sugar of each K unit was predicted, and glycosyltransferases encoded by each gene cluster were assigned to the formation of the linkages between sugars in the corresponding K unit.
Resumo:
Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23 +/- 2.4years, 66 +/- 7.1kg & 1.68 +/- 0.13m and 78 females whose age, weight & height were 22 +/- 1.8years, 55 +/- 4.7kg & 1.6 +/- 0.11m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24 +/- 2.6years, 66 +/- 8.2kg & 1.72 +/- 0.18m and 66 females whose age, weight & height were 23 +/- 1.5years, 54 +/- 5.6kg & 1.62 +/- 0.15m)(Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.
Resumo:
To help with the clinical screening and diagnosis of abdominal aortic aneurysm (AAA), we evaluated the effect of inflow angle (IA) and outflow bifurcation angle (BA) on the distribution of blood flow and wall shear stress (WSS) in an idealized AAA model. A 2D incompressible Newtonian flow is assumed and the computational simulation is performed using finite volume method. The results showed that the largest WSS often located at the proximal and the distal end of the AAA. An increase in IA resulted in an increase in maximum WSS. We also found that WSS was maximal when BA was 90°. IA and BA are two important geometrical factors, they may help with AAA risk assessment along with the commonly used AAA diameter.
Resumo:
Background: Coronary tortuosity (CT) is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. Methods: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA) and coronary tortuosity number (CTN) on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. Results: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. Conclusions: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.
Resumo:
Stroke is one of the leading causes of death in the world, resulting mostly from the sudden ruptures of atherosclerosis carotid plaques. Until now, the exact plaque rupture mechanism has not been fully understood, and also the plaque rupture risk stratification. The advanced multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components to be visualized in-vivo and reconstructed by computational modeling. In the study, plaque stress analysis using fully coupled fluid structure interaction was applied to 20 patients (12 symptomatic and 8 asymptomatic) reconstructed from in-vivo MRI, followed by a detailed biomechanics analysis, and morphological feature study. The locally extreme stress conditions can be found in the fibrous cap region, 85% at the plaque shoulder based on the present study cases. Local maximum stress values predicted in the plaque region were found to be significantly higher in symptomatic patients than that in asymptomatic patients (200±43. kPa vs. 127±37. kPa, p=0.001). Plaque stress level, defined by excluding 5% highest stress nodes in the fibrous cap region based on the accumulative histogram of stress experienced on the computational nodes in the fibrous cap, was also significantly higher in symptomatic patients than that in asymptomatic patients (154±32. kPa vs. 111±23. kPa, p<0.05). Although there was no significant difference in lipid core size between the two patient groups, symptomatic group normally had a larger lipid core and a significantly thinner fibrous cap based on the reconstructed plaques using 3D interpolation from stacks of 2D contours. Plaques with a higher stenosis were more likely to have extreme stress conditions upstream of plaque throat. The combined analyses of plaque MR image and plaque stress will advance our understanding of plaque rupture, and provide a useful tool on assessing plaque rupture risk.
Resumo:
Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in western countries. It is believed that high stresses within plaque can be an important factor on triggering the rupture of the plaque. Stress analysis in the coronary and carotid arteries with plaque have been developed by many researchers from 2D to 3-D models, from structure analysis only to the Fluid-Structure Interaction (FSI) models[1].
Resumo:
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
Resumo:
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T′′), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T′′ MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T′′ phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.
Resumo:
Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.