294 resultados para scanning tunnel microscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pretreatments of sugarcane bagasse by three high boiling-point polyol solutions were compared in acid-catalysed processes. Pretreatments by ethylene glycol (EG) and propylene glycol solutions containing 1.2 % H2SO4 and 10 % water at 130 °C for 30 min removed 89 % lignin from bagasse resulting in a glucan digestibility of 95 % with a cellulase loading of ~20 FPU/g glucan. Pretreatment by glycerol solution under the same conditions removed 57 % lignin with a glucan digestibility of 77 %. Further investigations with EG solutions showed that increases in acid content, pretreatment temperature and time, and decrease in water content improved pretreatment effectiveness. A good linear correlation of glucan digestibility with delignification was observed with R2 = 0.984. Bagasse samples pretreated with EG solutions were characterised by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction, which confirmed that improved glucan enzymatic digestibility is mainly due to delignification and defibrillation of bagasse. Pretreatment by acidified EG solutions likely led to the formation of EG-glycosides. Up to 36 % of the total lignin was recovered from pretreatment hydrolysate, which may improve the pretreatment efficiency of recycled EG solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. We have previously reported an effective low temperature (90 °C) process at atmospheric pressure for pretreatment of sugarcane bagasse with acidified mixtures of ethylene carbonate (EC) and ethylene glycol (EG). In this study, “greener” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90 °C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified EC. Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied a mineral sample of mottramite PbCu(VO4)(OH) from Tsumeb, Namibia using a combination of scanning electron microscopy with EDX, Raman and infrared spectroscopy. Chemical analysis shows principally the elements V, Pb and Cu. Ca occurs as partial substitution of Pb as well as P and As in substitution to V. Minor amounts of Si and Cr were also observed. The Raman band of mottramite at 829 cm-1, is assigned to the ν1 symmetric (VO-4) ) stretching mode. The complexity of the spectra is attributed to the chemical composition of the Tsumeb mottramite. The ν3 antisymmetric vibrational mode of mottramite is observed as very low intensity bands at 716 and 747 cm-1. The series of Raman bands at 411, 439, 451 cm-1 and probably also the band at 500 cm-1 are assigned to the (VO-4) ν2 bending mode. The series of Raman bands at 293, 333 and 366 cm-1 are attributed to the (VO-4) ) ν4 bending modes. The ν3, ν3 and ν4 regions are complex for both minerals and this is attributed to symmetry reduction of the vanadate unit from Td to Cs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maxwellite NaFe3+(AsO4)F is an arsenate mineral containing fluoride and forms a continuous series with tilasite CaMg(AsO4)F. Both maxwellite and tilasite form a continuous series with durangite NaAl3+(AsO4)-F. We have used the combination of scanning electron microscopy with EDS and vibrational spectroscopy to chemically analyse the mineral maxwellite and make an assessment of the molecular structure. Chemical analysis shows that maxwellite is composed of Fe, Na and Ca with minor amounts of Mn and Al. Raman bands for tilasite at 851 and 831 cm�1 are assigned to the Raman active m1 symmetric stretching vibration (A1) and the Raman active triply degenerate m3 antisymmetric stretching vibration (F2). The Raman band of maxwellite at 871 cm�1 is assigned to the m1 symmetric stretching vibration and the Raman band at 812 cm�1 is assigned to the m3 antisymmetric stretching vibration. The intense Raman band of tilasite at 467 cm�1 is assigned to the Raman active triply degenerate m4 bending vibration (F2). Raman band at 331 cm�1 for tilasite is assigned to the Raman active doubly degenerate m2 symmetric bending vibration (E). Both Raman and infrared spectroscopy do not identify any bands in the hydroxyl stretching region as is expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the hydrated hydroxyl silicate mineral inesite of formula Ca2(Mn,Fe)7Si10O28(OH)⋅5H2O using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. SEM analysis shows the mineral to be a pure monomineral with no impurities. Semiquantitative analysis shows a homogeneous phase, composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cm-1 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. Infrared bands found at 896, 928, 959 and 985 cm-1 are attributed to the OSiO antisymmetric stretching vibrations. An intense broad band at 653 cm-1 with shoulder bands at 608, 631 and 684 cm-1 are associated with the bending modes of the OSiO units of the 6- and 8-membered rings of the [Si10O28] units. The sharp band at 3642 cm-1 with shoulder bands at 3612 and 3662 cm-1 are assigned to the OH stretching vibrations of the hydroxyl units. The broad Raman band at 3420 cm-1 with shoulder bands at 3362 and 3496 cm-1 are assigned to the water stretching vibrations. The application of vibrational spectroscopy has enabled an assessment of the molecular structure of inesite to be undertaken.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different amounts of Ru were implanted into thermally evaporated WO3 thin films by ion implantation. The films were subsequently annealed at 600oC for 2 hours in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at%. The un-implanted WO3 films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman spectroscopy two peaks at 408 and 451 cm-1 (in addition to the typical vibrational peaks of the monoclinic WO3 phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-Ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d5/2 at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO2 and NO with higher sensor response to NO2. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO3 films with sufficient film porosity and film thickness can be beneficial for NO2 sensing at temperatures in the range of 250°C to 350°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TiO2 spheres assembled by nanorods, nanoplates and nanosheets were fabricated by facile hydrothermal/solvothermal methods. The three samples were thoroughly characterised by scanning electron microscopy, X-ray diffraction, the Brunauer–Emmett–Teller method and UV spectroscopy. The surface area of spheres assembled by nanosheets was 83.9 m2g–1, which is larger than that obtained for nanorods (10.8 m2g–1) and nanoplates (6.31 m2g–1). Their photocatalytic performance was evaluated in terms of the decomposition rate of methyl orange in these three samples under UV irradiation. The best photoactivity was observed in the samples constructed from nanosheets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) are an integral part of the rail track signaling system and pose significant maintenance and replacement costs due to their low and fluctuating service lives. Failure occurs mainly in rail head region, bolt- holes of fishplates and web-holes of the rails. Propagation of cracks is influenced by the evolution of internal residual stresses in rails during rail manufacturing (hot-rolling, roller-straightening, and head-hardening process), and during service, particularly in heavy rail haul freight systems where loads are high. In this investigation, rail head accumulated residual stresses were analysed using neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Two ex-service two head-hardened rail joints damaged under different loading were examined and results were compared with those obtained from an unused rail joint reference sample in order to differentiate the stresses developed during rail manufacturing and stresses accumulated during rail service. Neutron diffraction analyses were carried out on the samples in longitudinal, transverse and vertical directions, and on 5mm thick sliceed samples cut by Electric Discharge Machining (EDM). For the rail joints from the service line, irrespective of loading conditions and in-service times, results revealed similar depth profiles of stress distribution. Evolution of residual stress fields in rails due to service was also accompanied by evidence of larger material flow based on reflected light and scanning electron microscopy studies. Stress evolution in the vicinity of rail ends was characterised by a compressive layer, approximately 5 mm deep, and a tension zone located approximately 5- 15mm below the surfaces. A significant variation of d0 with depth near the top surface was detected and was attributed to decarburization in the top layer induced by cold work. Stress distributions observed in longitudinal slices of the two different deformed rail samples were found to be similar. For the undeformed rail, the stress distributions obtained could be attributed to variations associated with thermo-mechanical history of the rail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The particle size, morphology, crystallinity order and structural defects of four kaolinite samples are characterized by the techniques including particle size analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The particle size of four kaolinite samples gradually increases. Four samples all belong to the ordered kaolinite and show a decrease in structural order with the increase of kaolinite particle size. The changes of structural defect are proved by the increase of the band splitting in Raman spectroscopy, the decrease of the intensity of absorption bands in infrared spectroscopy, and the decrease of equivalent silicon atom and the increase of nonequivalent aluminum atom in MAS NMR spectroscopy. The differences in morphology and structural defect are attributed to the broken bonds of Al–O–Si, Al–O–Al and Si–O–Si and the Al substitution for Si in tetrahedral sheets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe2+ and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125 cm−1. The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119 cm−1. These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484 cm−1 is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600 cm−1 are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608 cm−1. The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime.