279 resultados para pedagogía experimental
Resumo:
This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.
Resumo:
An experiment tested the hypothesis that individuals high in negative affectivity (NA) show increased stress reactivity to stressors. There were three predictor variables: NA (measured 1 week prior to experimental participation), and two manipulated variables—demand (high/low) and behavioral control (high/low). First-year psychology students (n=256) were randomly allocated to one of the four experimental conditions. Measures obtained were initial and post-task negative mood, coping strategies, task satisfaction, and performance (subjective and objective). Participants with high levels of NA reported more post-task negative mood in response to high demand conditions, compared to participants with low NA. A similar pattern of results emerged for task satisfaction, particularly in response to high demand-low behavioral control situations. Mediation analyses suggested this was because participants with high NA used more emotion-focused coping strategies. The study provides support for the stress reactivity role of NA in the stressor-strain process.
Resumo:
The purpose of the present study was to examine the extent to which Desire for Control (DFC) interacts with experimental manipulations of demand and control, and the consequences of these interactions on task satisfaction and perceived goal attainment (i.e. task performance and task mastery). It was expected that the proposed stress-buffering effects of control would be evident only for individuals high in DFC. Moreover, it was anticipated that control may have a stress-exacerbating effect for those low in DFC. These hypotheses were tested on a sample of 137 first year psychology students who participated in an in-basket activity under low and high conditions of demand and control. Results revealed that the proposed stress-buffering effect of control was found only for those high in DFC and a stress-exacerbating effect of increased control was evident for those low in DFC on task performance and task mastery perceptions. Future research directions and the implications of these findings to applied settings are discussed.
Resumo:
We have investigated the gas-phase reaction of the alpha-aminoacetate (glycyl) radical anion (NH2(sic)CHCO2-) with O-2 using ion trap mass spectrometry, quantum chemistry, and statistical reaction rate theory. This radical is found to undergo a remarkably rapid reaction with O-2 to form the hydroperoxyl radical (HO2(sic)) and an even-electron imine (NHCHCO2-), with experiments and master equation simulations revealing that reaction proceeds at the ion molecule collision rate. This reaction is facilitated by a low-energy concerted HO2(sic) elimination mechanism in the NH2CH(OO(sic))CO2- peroxyl radical. These findings can explain the widely observed free-radical-mediated oxidation of simple amino acids to amides plus alpha-keto acids (their imine hydrolysis products). This work also suggests that imines will be the main intermediates in the atmospheric oxidation of primary and secondary amines, including amine carbon capture solvents such as 2-aminoethanol (commonly known as monoethanolamine, or MEA), in a process that avoids the ozone-promoting conversion of (sic)NO to (sic)NO2 commonly encountered in peroxyl radical chemistry.
Resumo:
Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)
Resumo:
Neutral NCN is made in a mass spectrometer by charge stripping of NCN-., while neutral dicyanocarbene NCCCN can be formed by neutralization of either the corresponding anionic and cationic species, NCCCN-. and NCCCN+.. Theoretical calculations at the RCCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory indicate that the (3)Sigma (-)(g) State of NCCCN is 18 kcal mol(-1) more stable than the (1)A(1) state. While the majority of neutrals formed from either NCCCN-. or NCCCN+. correspond to NCCCN, a proportion of the neutral NCCCN molecules have sufficient excess energy to effect rearrangement, as evidenced by a loss of atomic carbon in the neutralization reionization (NR) spectra of either NCCCN+. and NCCCN-.. C-13 labeling studies indicate that loss of carbon occurs statistically following or accompanied by scrambling of all three carbon atoms. A theoretical study at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory indicates that C loss is a consequence of the rearrangement sequence NCCCN --> CNCCN --> CNCNC and that C scrambling occurs within singlet CNCCN via the intermediacy of a four-membered C-2v-symmetrical transition structure.
Resumo:
Three different radical anions of the empirical formula C5H2 have been generated by negative ion chemical ionization mass spectrometry in the gas phase. The isomers C4CH2 •-, and HC5H•- have been synthesized by unequivocal routes and their connectivities confirmed by deuterium labeling, charge reversal, and neutralization reionization experiments. The results also provided evidence for the existence of neutrals C4CH2, C2CHC2H, and HC5H as stable species; this is the first reported observation of C2CHC2H. Ab initio calculations confirm these structures to be minima on the anion and neutral potential energy surfaces.
Resumo:
The ability to activate pro-matrix metalloproteinase (pro-MMP)-2 via membrane type-MMP is a hallmark of human breast cancer cell lines that show increased invasiveness, suggesting that MMP-2 contributes to human breast cancer progression. To investigate this, we have stably transfected pro-MMP-2 into the human breast cancer cell line MDA-MB-231, which lacks MMP-2 expression but does express its cell surface activator, membrane type 1-MMP. Multiple clones were derived and shown to produce pro-MMP-2 and to activate it in response to concanavalin A. In vitro analysis showed that the pro-MMP-2-transfected clones exhibited an increased invasive potential in Boyden chamber and Matrigel outgrowth assays, compared with the parental cells or those transfected with vector only. When inoculated into the mammary fat pad of nude mice, each of the MMP-2-tranfected clones grew faster than each of the vector controls tested. After intracardiac inoculation into nude mice, pro-MMP-2-transfected clones showed a significant increase in the incidence of metastasis to brain, liver, bone, and kidney compared with the vector control clones but not lung. Increased tumor burden was seen in the primary site and in lung metastases, and a trend toward increased burden was seen in bone, however, no change was seen in brain, liver, or kidney. This data supports a role for MMP-2 in breast cancer progression, both in the growth of primary tumors and in their spread to distant organs. MMP-2 may be a useful target for breast cancer therapy when refinement of MMP inhibitors provides for MMP-specific agents.
Resumo:
The collision-induced dissociation ( CID) mass spectra of the \[M-H](-) anions of methyl, ethyl, and tert-butyl hydroperoxides have been measured over a range of collision energies in a flowing afterglow - selected ion flow tube (FA-SIFT) mass spectrometer. Activation of the CH3OO- anion is found to give predominantly HO- fragment anions whilst CH3CH2OO- and (CH3)(3)COO- produce HOO- as the major ionic fragment. These results, and other minor fragmentation pathways, can be rationalized in terms of unimolecular rearrangement of the activated anions with subsequent decomposition. The rearrangement reactions occur via initial abstraction of a proton from the alpha-carbon in the case of CH3OO- or the beta-carbon for CH3CH2OO- and (CH3)(3)COO-. Electronic structure calculations suggest that for the CH3CH2OO- anion, which can theoretically undergo both alpha- and beta-proton abstraction, the latter pathway, resulting in HOO- + CH2CH2, is energetically preferred.
Resumo:
Electrospray ionisation tandem mass spectrometry has allowed the unambiguous identification and quantification of individual lens phospholipids in human and six animal models. Using this approach ca. 100 unique phospholipids have been characterised. Parallel analysis of the same lens extracts by a novel direct-insertion electron-ionization technique found the cholesterol content of human lenses to be significantly higher (ca. 6 times) than lenses from the other animals. The most abundant phospholipids in all the lenses examined were choline-containing phospholipids. In rat, mouse, sheep, cow, pig and chicken, these were present largely as phosphatidylcholines, in contrast 66% of the total phospholipid in Homo sapiens was sphingomyelin, with the most abundant being dihydrosphingomyelins, in particular SM(d18:0/16:0) and SM(d18:0/24:1). The abundant glycerophospholipids within human lenses were found to be predominantly phosphatidylethanolamines and phosphatidylserines with surprisingly high concentrations of ether-linked alkyl chains identified in both classes. This study is the first to identify the phospholipid class (head-group) and assign the constituent fatty acid(s) for each lipid molecule and to quantify individual lens phospholipids using internal standards. These data clearly indicate marked differences in the membrane lipid composition of the human lens compared to commonly used animal models and thus predict a significant variation in the membrane properties of human lens fibre cells compared to those of other animals. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Three anion isomers of formula C7H have been synthesised in the mass spectrometer by unequivocal routes. The structures of the isomers are \[HCCC(C-2)(2)](-), C6CH- and C2CHC4-. One of these, \[HCCC(C-2)(2)](-), is formed in sufficient yield to allow it to be charge stripped to the corresponding neutral radical.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.
Resumo:
In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.