203 resultados para Web, Html 5, JavaScript, Dart, Structured Web Programming
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
As a model for knowledge description and formalization, ontologies are widely used to represent user profiles in personalized web information gathering. However, when representing user profiles, many models have utilized only knowledge from either a global knowledge base or a user local information. In this paper, a personalized ontology model is proposed for knowledge representation and reasoning over user profiles. This model learns ontological user profiles from both a world knowledge base and user local instance repositories. The ontology model is evaluated by comparing it against benchmark models in web information gathering. The results show that this ontology model is successful.
Resumo:
The interoperable and loosely-coupled web services architecture, while beneficial, can be resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker can use a relatively insignificant amount of resources to exhaust the computational resources of a web service. We investigate the effectiveness of defending web services from DoS attacks using client puzzles, a cryptographic countermeasure which provides a form of gradual authentication by requiring the client to solve some computationally difficult problems before access is granted. In particular, we describe a mechanism for integrating a hash-based puzzle into existing web services frameworks and analyze the effectiveness of the countermeasure using a variety of scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks. They can also mitigate certain types of semantic-based attacks, although they may not be the optimal solution.
Resumo:
Background: Specialised disease management programmes for chronic heart failure (CHF) improve survival, quality of life and reduce healthcare utilisation. The overall efficacy of structured telephone support or telemonitoring as an individual component of a CHF disease management strategy remains inconclusive. Objectives: To review randomised controlled trials (RCTs) of structured telephone support or telemonitoring compared to standard practice for patients with CHF in order to quantify the effects of these interventions over and above usual care for these patients. Search strategy: Databases (the Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment Database (HTA) on The Cochrane Library, MEDLINE, EMBASE, CINAHL, AMED and Science Citation Index Expanded and Conference Citation Index on ISI Web of Knowledge) and various search engines were searched from 2006 to November 2008 to update a previously published non-Cochrane review. Bibliographies of relevant studies and systematic reviews and abstract conference proceedings were handsearched. No language limits were applied. Selection criteria: Only peer reviewed, published RCTs comparing structured telephone support or telemonitoring to usual care of CHF patients were included. Unpublished abstract data was included in sensitivity analyses. The intervention or usual care could not include a home visit or more than the usual (four to six weeks) clinic follow-up. Data collection and analysis: Data were presented as risk ratio (RR) with 95% confidence intervals (CI). Primary outcomes included all-cause mortality, all-cause and CHF-related hospitalisations which were meta-analysed using fixed effects models. Other outcomes included length of stay, quality of life, acceptability and cost and these were described and tabulated. Main results: Twenty-five studies and five published abstracts were included. Of the 25 full peer-reviewed studies meta-analysed, 16 evaluated structured telephone support (5613 participants), 11 evaluated telemonitoring (2710 participants), and two tested both interventions (included in counts). Telemonitoring reduced all-cause mortality (RR 0.66, 95% CI 0.54 to 0.81, P < 0.0001) with structured telephone support demonstrating a non-significant positive effect (RR 0.88, 95% CI 0.76 to 1.01, P = 0.08). Both structured telephone support (RR 0.77, 95% CI 0.68 to 0.87, P < 0.0001) and telemonitoring (RR 0.79, 95% CI 0.67 to 0.94, P = 0.008) reduced CHF-related hospitalisations. For both interventions, several studies improved quality of life, reduced healthcare costs and were acceptable to patients. Improvements in prescribing, patient knowledge and self-care, and New York Heart Association (NYHA) functional class were observed. Authors' conclusions: Structured telephone support and telemonitoring are effective in reducing the risk of all-cause mortality and CHF-related hospitalisations in patients with CHF; they improve quality of life, reduce costs, and evidence-based prescribing.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
Resumo:
Increasingly scientists are using collections of software tools in their research. These tools are typically used in concert, often necessitating laborious and error-prone manual data reformatting and transfer. We present an intuitive workflow environment to support scientists with their research. The workflow, GPFlow, wraps legacy tools, presenting a high level, interactive web-based front end to scientists. The workflow backend is realized by a commercial grade workflow engine (Windows Workflow Foundation). The workflow model is inspired by spreadsheets and is novel in its support for an intuitive method of interaction enabling experimentation as required by many scientists, e.g. bioinformaticians. We apply GPFlow to two bioinformatics experiments and demonstrate its flexibility and simplicity.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.
Resumo:
Search log data is multi dimensional data consisting of number of searches of multiple users with many searched parameters. This data can be used to identify a user’s interest in an item or object being searched. Identifying highest interests of a Web user from his search log data is a complex process. Based on a user’s previous searches, most recommendation methods employ two-dimensional models to find relevant items. Such items are then recommended to a user. Two-dimensional data models, when used to mine knowledge from such multi dimensional data may not be able to give good mappings of user and his searches. The major problem with such models is that they are unable to find the latent relationships that exist between different searched dimensions. In this research work, we utilize tensors to model the various searches made by a user. Such high dimensional data model is then used to extract the relationship between various dimensions, and find the prominent searched components. To achieve this, we have used popular tensor decomposition methods like PARAFAC, Tucker and HOSVD. All experiments and evaluation is done on real datasets, which clearly show the effectiveness of tensor models in finding prominent searched components in comparison to other widely used two-dimensional data models. Such top rated searched components are then given as recommendation to users.
Resumo:
We propose to use the Tensor Space Modeling (TSM) to represent and analyze the user’s web log data that consists of multiple interests and spans across multiple dimensions. Further we propose to use the decomposition factors of the Tensors for clustering the users based on similarity of search behaviour. Preliminary results show that the proposed method outperforms the traditional Vector Space Model (VSM) based clustering.