228 resultados para Vortex configurations
Resumo:
Normal asymmetric glow dc discharge in the thermal furnace converted into the efficient PECVD system was imaged to adjust the structure of the plasma column to the two possible localizations of the process zone. The visualization revealed the possibility to use short and long discharge configurations for the plasma-enabled growth and processing of various nanostructures in the modified setup. Images of the discharge in the two localizations are presented.
Resumo:
Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.
Resumo:
Thunderstorm downbursts are important for wind engineers as they have been shown to produce the design wind speeds for mid to high return periods in many regions of Australia [1]. In structural design codes (e.g. AS/NZS1170.02-02) an atmospheric boundary layer (ABL) is assumed, and a vertical profile is interpolated from recorded 10 m wind speeds. The ABL assumption is however inaccurate when considering the complex structure of a thunderstorm outflow, and its effects on engineered structures. Several researchers have shown that the downburst, close to its point of divergence is better represented by an impinging wall jet profile than the traditional ABL. Physical modelling is the generally accepted approach to estimate wind loads on structures and it is therefore important to physically model the thunderstorm downburst so that its effects on engineered structures may be studied. An advancement on the simple impinging jet theory, addressed here is the addition of a pulsing mechanism to the jet which allows not only the divergent characteristics of a downburst to be produced, but also it allows the associated leading ring vortex to be developed. The ring vortex modelling is considered very important for structural design as it is within the horizontal vortex that the largest velocities occur [2]. This paper discusses the flow field produced by a pulsed wall jet, and also discusses the induced pressures that this type of flow has on a scaled tall building.
Resumo:
Various reactor configurations for generating atmospheric-pressure discharges were tested, and several types of nanostructures, including Mo nanoflakes, were successfully synthesized. Here, we present photographs of the discharges, as well as SEM images of representative nanostructures.
Resumo:
Highly effective (more than 99.9%) inactivation of a pathogenic fungus Candida albicans commonly found in oral, respiratory, digestive, and reproduction systems of a human body using atmospheric-pressure plasma jets sustained in He+ O2 gas mixtures is reported. The inactivation is demonstrated in two fungal culture configurations with open (Petri dish without a cover) and restricted access to the atmosphere (Petri dish with a cover) under specific experimental conditions. It is shown that the fungal inactivation is remarkably more effective in the second configuration. This observation is supported by the scanning and transmission electron microscopy of the fungi before and after the plasma treatment. The inactivation mechanism explains the experimental observations under different experimental conditions and is consistent with the reports by other authors. The results are promising for the development of advanced health care applications.
Resumo:
The development, operation, and applications of two configurations of an integrated plasma-aided nanofabrication facility (IPANF) comprising low-frequency inductively coupled plasma-assisted, low-pressure, multiple-target RF magnetron sputtering plasma source, are reported. The two configurations of the plasma source have different arrangements of the RF inductive coil: a conventional external flat spiral "pancake" coil and an in-house developed internal antenna comprising two orthogonal RF current sheets. The internal antenna configuration generates a "unidirectional" RF current that deeply penetrates into the plasma bulk and results in an excellent uniformity of the plasma over large areas and volumes. The IPANF has been employed for various applications, including low-temperature plasma-enhanced chemical vapor deposition of vertically aligned single-crystalline carbon nanotips, growth of ultra-high aspect ratio semiconductor nanowires, assembly of optoelectronically important Si, SiC, and Al1-xInxN quantum dots, and plasma-based synthesis of bioactive hydroxyapatite for orthopedic implants.
Resumo:
This paper presents the details of research undertaken on the development of an energy based time equivalent approach for light gauge steel frame (LSF) walls. This research utilized an energy based time equivalent approach to obtain the fire resistance ratings (FRR) of LSF walls exposed to realistic design fires with respect to standard fire exposure [1]. It is based on the equal area concept of fire severity and relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance of single and double plasterboard lined and externally insulated LSF walls. The predicted fire resistance ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations. This paper presents the review of the available time equivalent approaches and the development of energy based time equivalent approach for the prediction of fire resistance ratings of LSF walls exposed to realistic design fires.
Resumo:
A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled plasmas with external at coil configurations. The measurements also reveal a weak azimuthal dependence of the global plasma parameters at low values of the input RF power, which was earlier predicted theoretically. The azimuthal dependence of the global plasma parameters vanishes at high input RF powers. Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing applications and surface engineering.
Resumo:
Cities in the 21st century have become layered and complex systems not only in terms of physical form, but also social and cultural structure. Consolidated tools to analyze the urban environment have today to be improved including a strong interdisciplinary perspective in order to understand and manage the unprecedented complexity our cities are facing. Redevelopments, new estates, internal and external migrations are all dynamics which are deeply modifying the built environment directly or indirectly also affecting local identity, culture and social structure. This paper investigates the relationship between urban form and social behaviors, with particular attention to the perception of the built environment and its use by long term residents, recent migrants as well as tourists. A comparative study is suggested between South East Queensland and Florida; this two regions share common features such as subtropical climate, similar lifestyle, leisure cities and canal estates. Neighborhoods on the Gold and Sunshine Coasts have been designed using the communities of Florida, such as Celebration or Seaside, as models. These regions share also significant migration processes, similar social problems and high crime rates, which directly affect the local economies. Comparing Florida and SEQ could provide an understanding of different strategies adopted and how urban development and lifestyle can be managed maintaining social equity and security. This study, investigates people’s perception of built form and how this affects the use of public space. The relationship between built environment and social behaviour has been previously investigated, for example by environmental psychology; the innovation proposed by this research is to study the perception of place in leisure cities at multiple levels. Locals, migrants and tourists have different understanding of the built form in the same location; this understanding affects the use of space and the attitude to visit or avoid some precincts. The research methodology integrates traditional morpho-typological investigations with qualitative methods; data are collected in the first phase through online surveys about perception of urban forms. Findings guide then the selection of neighbourhoods to be investigated in detail through questionnaires and Nolli maps, specifying morphological regions as well as recurrent building typologies. A final phase includes interviews with selected stakeholders. Major urban projects are discussed addressing how they are used and perceived by locals, migrants or tourists; the comparison between SEQ and Florida allows the identification of strategies to address migration issues in both regions with particular attention to urban form and placemaking dynamics.
Resumo:
This article analyses ‘performance government’ as an emergent form of rule in advanced liberal democracies. It discloses how teachers and school leaders in Australia are being governed by the practices of performance government which centre on the recently established Australian Institute for Teaching and School Leadership (AITSL) and are given direction by two major strategies implicit within the exercise of this form of power: activation and regulation. Through an ‘analytics of government’ of these practices, the article unravels the new configurations of corporatized expert and academic knowledge—and their attendant methods of application—by which the self-governing capacities of teachers and school leaders are being activated and regulated in ways that seek to optimize the performance of these professionals. The article concludes by outlining some of the dangers of performance government for the professional freedom of educators and school leaders.
Resumo:
The BRAKE Driver Awareness Program provides evidence-based behaviour, risk, attitude and knowledge education for young drivers. BRAKE was founded during 2006 by Queensland Police Sergeant Rob Duncan and has been delivered to more than 35,000 senior secondary students since 2007. BRAKE is a participant directed program supported by resources provided at no cost. It includes eight parts able to be delivered in different configurations. BRAKE is endorsed by the Queensland Police and Queensland Ambulance Services. It is recognised by the Queensland Studies Authority as a Queensland Certificate of Education registered life skills course. This session is a must attend for secondary teachers, coordinators, staff in senior leadership positions and other stakeholders seeking a unique approach to adolescent road safety education. It will conclude with an opportunity to consider how BRAKE can be integrated into the senior secondary Health Education curriculum or pastoral care, social action and personal development programs.
Resumo:
We describe the advantages of dual-gate thin-film transistors (TFTs) for display applications. We show that in TFTs with active semiconductor layers composed of diketopyrrolopyrrole-naphthalene copolymer, the on-current is increased, the off-current is reduced, and the sub-threshold swing is improved compared to single-gate devices. Charge transport measurements in steady-state and under non-quasi-static conditions reveal the reasons for this improved performance. We show that in dual-gate devices, a much smaller fraction of charge carriers move in slow trap states. We also compare the activation energies for charge transport in the top-gate and bottom-gate configurations.
Resumo:
In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.
Resumo:
The Minerals Council of Australia’s (MCA) Water Accounting Framework (WAF) is an industry lead initiative to enable cross company communication and comparisons of water management performance. The WAF consists of two models, the Input-Output Model that represents water interactions between an operation and its surrounding environment and the Operational Model that represents water interactions within an operation. Recently, MCA member companies have agreed to use the Input-Output Model to report on their external water interactions in Australian operations, with some adopting it globally. The next step will be to adopt the Operational Model. This will expand the functionality of the WAF from corporate reporting to allowing widespread identification of inefficiencies and to connect internal and external interactions. Implementing the WAF, particularly the Operational Model, is non-trivial. It can be particularly difficult for operations that are unfamiliar with the WAF definitions and methodology, lack information pertaining to flow volumes or contain unusual configurations. Therefore, there is a need to help industry with its implementation. This work presents a step-by-step guide to producing the Operational Model. It begins by describing a methodology for implementing the Operational Model by describing the identification of pertinent objects (stores, tasks and treatments), quantification of flows, aggregation of objects and production of reports. It then discusses how the Operational Model can represent a series of challenging scenarios and how it can be connected with Input-Output Model to improve water management.
Resumo:
It has been argued that different bundles or configurations of human resource practices can improve innovation performance, but there is little empirically-based research that provides details of the practices utilised by different types of innovative firms. This study aimed to identify how different types of firms vary their HR practices to build organisation-specific innovation capabilities. The paper presents findings from a qualitative study of 26 innovative Danish firms categorised as technology-based, knowledge-intensive, or hybrid in their industry orientation. The findings highlight that knowledge-intensive firms have notably different profiles of HRM practices to technology-based firms, suggesting that firms utilise different practices to build innovation capacity depending on the core capabilities required for success in their respective industries. This paper contributes by demonstrating how HR practices differ across types of firms rather than relying on a universal perspective or one best way to design and implement HR practices.