194 resultados para Sewing machines
Resumo:
Dragline Swing to Dump Automation By Peter Corke, CSIRO Manufacturing Technology/CRC for Mining Technology and Equipment (CMTE) Peter Corke presented a case study of a project to automate the dragline swing to dump operation. The project is funded by ACARP, BHP Coal, Pacific Coal and the CMTE and is being carried out on a dragline at Pacific Coal's Meandu mine near Brisbane. Corke began by highlighting that the minerals industry makes extensive use of large, mechanised machines. However, unlike other industries, mining has not adopted automation and most machines are controlled by human operators on board the machine itself. Choosing an automation target The dragline automation was chosen because: ò draglines are one of the biggest capital assets in a mine; ò performance between operators vary significantly, so improved capital utilisation is possible; ò the dragline is often the bottleneck in production; ò a large part of the operation cycle is spent swinging from dig to dump; and ò it is technically feasible. There has been a history of drag line automation projects, none with great success.
Resumo:
An effective prognostics program will provide ample lead time for maintenance engineers to schedule a repair and to acquire replacement components before catastrophic failures occur. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique. For comparative study of the proposed model with the proportional hazard model (PHM), experimental bearing failure data from an accelerated bearing test rig were used. The result shows that the proposed prognostic model based on health state probability estimation can provide a more accurate prediction capability than the commonly used PHM in bearing failure case study.
Resumo:
Suppose a homeowner habitually enjoys sunbathing in his or her backyard, protected by a high fence from prying eyes, including those of an adolescent neighbour. In times past such homeowners could be assured that they might go about their activities without a threat to their privacy. However, recent years have seen technological advances in the development of unmanned aerial vehicles (‘UAVs’), also known colloquially as drones, that have allowed them to become more reduced in size, complexity and price. UAVs today include models retailing to the public for less than $350 and with an ease of operation that enables them to serve as mobile platforms for miniature cameras. These machines now mean that for individuals like the posited homeowner’s adolescent neighbour, barriers such as high fences no longer constitute insuperable obstacles to their voyeuristic endeavours. Moreover, ease of access to the internet and video sharing websites provides a ready means of sharing any recordings made with such cameras with a wide audience. Persons in the homeowner’s position might understandably seek some form of redress for such egregious invasions of their privacy. Other than some kind of self-help, what alternative measures may be available?
Resumo:
The research reported in this paper explores autonomous technologies for agricultural farming application and is focused on the development of multiple-cooperative agricultural robots (AgBots). These are highly autonomous, small, lightweight, and unmanned machines that operate cooperatively (as opposed to a traditional single heavy machine) and are suited to work on broadacre land (large-scale crop operations on land parcels greater than 4,000m2). Since this is a new, and potentially disruptive technology, little is yet known about farmer attitudes towards robots, how robots might be incorporated into current farming practice, and how best to marry the capability of the robot with the work of the farmer. This paper reports preliminary insights (with a focus on farmer-robot control) gathered from field visits and contextual interviews with farmers, and contributes knowledge that will enable further work toward the design and application of agricultural robotics.
Resumo:
"We live in times in which unlearning has become as important as learning. Dan Pink has called these times the Conceptual Age,i to distinguish them from the Knowledge/Information Age in which many of us were born and educated. Before the current Conceptual Age, the core business of learning was the routine accessing of information to solve routine problems, so there was real value in retaining and reusing the templates taught to us at schools and universities. What is different about the Conceptual Age is that it is characterised by new cultural forms and modes of consumption that require us to unlearn our Knowledge/Information Age habits to live well in our less predictable social world. The ‘correct’ way to write, for example, is no longer ‘correct’ if communicating by hypertext rather than by essay or letter. And who would bother with an essay or a letter or indeed a pen these days? Whether or not we agree that the Conceptual Age, amounts to the first real generation gap since rock and roll, as Ken Robinson claims,ii it certainly makes unique demands of educators, just as it makes unique demands of the systems, strategies and sustainability of organisations. Foremost among these demands, according to innovation analyst Charlie Leadbeater,iii is to unlearn the idea that we are becoming a more knowledgeable society with each new generation. If knowing means being intimately familiar with the knowledge embedded in the technologies we use in our daily lives, then, Leadbeater says, we have never been more ignorant.iv He reminds us that our great grandparents had an intimate knowledge of the technologies around them, and had no problem with getting the butter churn to work or preventing the lamp from smoking. Few of us would know what to do if our mobile phones stopped functioning, just as few of us know what is ‘underneath’ or ‘behind’ the keys of our laptops. Nor, indeed, do many of us want to know. But this means that we are all very quickly reduced to the quill and the lamp if we lose our power sources or if our machines cease to function. This makes us much more vulnerable – as well as much more ignorant in relative terms – than our predecessors."
Resumo:
In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.
Resumo:
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.
Resumo:
Everything revolves around desiring-machines and the production of desire… Schizoanalysis merely asks what are the machinic, social and technical indices on a socius that open to desiring-machines (Deleuze & Guattari, 1983, pp. 380-381). Achievement tests like NAPLAN are fairly recent, yet common, education policy initiatives in much of the Western world. They intersect with, use and change pre-existing logics of education, teaching and learning. There has been much written about the form and function of these tests, the ‘stakes’ involved and the effects of their practice. This paper adopts a different “angle of vision” to ask what ‘opens’ education to these regimes of testing(Roy, 2008)? This paper builds on previous analyses of NAPLAN as a modulating machine, or a machine characterised by the increased intensity of connections and couplings. One affect can be “an existential disquiet” as “disciplinary subjects attempt to force coherence onto a disintegrating narrative of self”(Thompson & Cook, 2012, p. 576). Desire operates at all levels of the education assemblage, however our argument is that achievement testing manifests desire as ‘lack’; seen in the desire for improved results, the desire for increased control, the desire for freedom, the desire for acceptance to name a few. For Deleuze and Guattari desire is irreducible to lack, instead desire is productive. As a productive assemblage, education machines operationalise and produce through desire; “Desire is a machine, and the object of the desire is another machine connected to it”(Deleuze & Guattari, 1983, p. 26). This intersection is complexified by the strata at which they occur, the molar and molecular connections and flows they make possible. Our argument is that when attention is paid to the macro and micro connections, the machines built and disassembled as a result of high-stakes testing, a map is constructed that outlines possibilities, desires and blockages within the education assemblage. This schizoanalytic cartography suggests a new analysis of these ‘axioms’ of testing and accountability. It follows the flows and disruptions made possible as different or altered connections are made and as new machines are brought online. Thinking of education machinically requires recognising that “every machine functions as a break in the flow in relation to the machine to which it is connected, but at the same time is also a flow itself, or the production of flow, in relation to the machine connected to it”(Deleuze & Guattari, 1983, p. 37). Through its potential to map desire, desire-production and the production of desire within those assemblages that have come to dominate our understanding of what is possible, Deleuze and Guattari’s method of schizoanalysis provides a provocative lens for grappling with the question of what one can do, and what lines of flight are possible.
Resumo:
This paper applies concepts Deleuze developed in his ‘Postscript on the Societies of Control’, especially those relating to modulatory power, dividuation and control, to aspects of Australian schooling to explore how this transition is manifesting itself. Two modulatory machines of assessment, NAPLAN and My Schools, are examined as a means to better understand how the disciplinary institution is changing as a result of modulation. This transition from discipline to modulation is visible in the declining importance of the disciplinary teacher–student relationship as a measure of the success of the educative process. The transition occurs through seduction because that which purports to measure classroom quality is in fact a serpent of modulation that produces simulacra of the disciplinary classroom. The effect is to sever what happens in the disciplinary space from its representations in a luminiferous ether that overlays the classroom.
Resumo:
Legal Context In the wake of the Copenhagen Accord 2009 and the Cancun Agreements 2010, a number of patent offices have introduced fast-track mechanisms to encourage patent applications in relation to clean technologies - such as those pertaining to hydrogen. However, patent offices will be under increasing pressure to ensure that the granted patents satisfy the requisite patent thresholds, as well as to identify and reject cases of fraud, hoaxes, scams, and swindles. Key Points This article examines the BlackLight litigation in the United States, the United Kingdom, and the European Patent Office, and considers how patent offices and courts deal with patent applications in respect of clean energy and perpetual motion machines. Practical Significance The capacity of patent offices to grant sound and reliable patents is critical to the credibility of the patent system, particularly in the context of the current focus upon promoting clean technologies.
Resumo:
The requirement of distributed computing of all-to-all comparison (ATAC) problems in heterogeneous systems is increasingly important in various domains. Though Hadoop-based solutions are widely used, they are inefficient for the ATAC pattern, which is fundamentally different from the MapReduce pattern for which Hadoop is designed. They exhibit poor data locality and unbalanced allocation of comparison tasks, particularly in heterogeneous systems. The results in massive data movement at runtime and ineffective utilization of computing resources, affecting the overall computing performance significantly. To address these problems, a scalable and efficient data and task distribution strategy is presented in this paper for processing large-scale ATAC problems in heterogeneous systems. It not only saves storage space but also achieves load balancing and good data locality for all comparison tasks. Experiments of bioinformatics examples show that about 89\% of the ideal performance capacity of the multiple machines have be achieved through using the approach presented in this paper.
Resumo:
Purpose – Ideally, there is no wear in hydrodynamic lubrication regime. A small amount of wear occurs during start and stop of the machines and the amount of wear is so small that it is difficult to measure with accuracy. Various wear measuring techniques have been used where out-of-roundness was found to be the most reliable method of measuring small wear quantities in journal bearings. This technique was further developed to achieve higher accuracy in measuring small wear quantities. The method proved to be reliable as well as inexpensive. The paper aims to discuss these issues. Design/methodology/approach – In an experimental study, the effect of antiwear additives was studied on journal bearings lubricated with oil containing solid contaminants. The test duration was too long and the wear quantities achieved were too small. To minimise the test duration, short tests of about 90 min duration were conducted and wear was measured recording changes in variety of parameters related to weight, geometry and wear debris. The out-of-roundness was found to be the most effective method. This method was further refined by enlarging the out-of-roundness traces on a photocopier. The method was proved to be reliable and inexpensive. Findings – Study revealed that the most commonly used wear measurement techniques such as weight loss, roughness changes and change in particle count were not adequate for measuring small wear quantities in journal bearings. Out-of-roundness method with some refinements was found to be one of the most reliable methods for measuring small wear quantities in journal bearings working in hydrodynamic lubrication regime. By enlarging the out-of-roundness traces and determining the worn area of the bearing cross-section, weight loss in bearings was calculated, which was repeatable and reliable. Research limitations/implications – This research is a basic in nature where a rudimentary solution has been developed for measuring small wear quantities in rotary devices such as journal bearings. The method requires enlarging traces on a photocopier and determining the shape of the worn area on an out-of-roundness trace on a transparency, which is a simple but a crude method. This may require an automated procedure to determine the weight loss from the out-of-roundness traces directly. This method can be very useful in reducing test duration and measuring wear quantities with higher precision in situations where wear quantities are very small. Practical implications – This research provides a reliable method of measuring wear of circular geometry. The Talyrond equipment used for measuring the change in out-of-roundness due to wear of bearings indicates that this equipment has high potential to be used as a wear measuring device also. Measurement of weight loss from the traces is an enhanced capability of this equipment and this research may lead to the development of a modified version of Talyrond type of equipment for wear measurements in circular machine components. Originality/value – Wear measurement in hydrodynamic bearings requires long duration tests to achieve adequate wear quantities. Out-of-roundness is one of the geometrical parameters that changes with progression of wear in a circular shape components. Thus, out-of-roundness is found to be an effective wear measuring parameter that relates to change in geometry. Method of increasing the sensitivity and enlargement of out-of-roundness traces is original work through which area of worn cross-section can be determined and weight loss can be derived for materials of known density with higher precision.
Resumo:
Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.
Resumo:
A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations