4 resultados para Sewing machines
em CaltechTHESIS
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.
Resumo:
We investigate the 2d O(3) model with the standard action by Monte Carlo simulation at couplings β up to 2.05. We measure the energy density, mass gap and susceptibility of the model, and gather high statistics on lattices of size L ≤ 1024 using the Floating Point Systems T-series vector hypercube and the Thinking Machines Corp.'s Connection Machine 2. Asymptotic scaling does not appear to set in for this action, even at β = 2.10, where the correlation length is 420. We observe a 20% difference between our estimate m/Λ^─_(Ms) = 3.52(6) at this β and the recent exact analytical result . We use the overrelaxation algorithm interleaved with Metropolis updates and show that decorrelation time scales with the correlation length and the number of overrelaxation steps per sweep. We determine its effective dynamical critical exponent to be z' = 1.079(10); thus critical slowing down is reduced significantly for this local algorithm that is vectorizable and parallelizable.
We also use the cluster Monte Carlo algorithms, which are non-local Monte Carlo update schemes which can greatly increase the efficiency of computer simulations of spin models. The major computational task in these algorithms is connected component labeling, to identify clusters of connected sites on a lattice. We have devised some new SIMD component labeling algorithms, and implemented them on the Connection Machine. We investigate their performance when applied to the cluster update of the two dimensional Ising spin model.
Finally we use a Monte Carlo Renormalization Group method to directly measure the couplings of block Hamiltonians at different blocking levels. For the usual averaging block transformation we confirm the renormalized trajectory (RT) observed by Okawa. For another improved probabilistic block transformation we find the RT, showing that it is much closer to the Standard Action. We then use this block transformation to obtain the discrete β-function of the model which we compare to the perturbative result. We do not see convergence, except when using a rescaled coupling β_E to effectively resum the series. For the latter case we see agreement for m/ Λ^─_(Ms) at , β = 2.14, 2.26, 2.38 and 2.50. To three loops m/Λ^─_(Ms) = 3.047(35) at β = 2.50, which is very close to the exact value m/ Λ^─_(Ms) = 2.943. Our last point at β = 2.62 disagrees with this estimate however.
Resumo:
A neural network is a highly interconnected set of simple processors. The many connections allow information to travel rapidly through the network, and due to their simplicity, many processors in one network are feasible. Together these properties imply that we can build efficient massively parallel machines using neural networks. The primary problem is how do we specify the interconnections in a neural network. The various approaches developed so far such as outer product, learning algorithm, or energy function suffer from the following deficiencies: long training/ specification times; not guaranteed to work on all inputs; requires full connectivity.
Alternatively we discuss methods of using the topology and constraints of the problems themselves to design the topology and connections of the neural solution. We define several useful circuits-generalizations of the Winner-Take-All circuitthat allows us to incorporate constraints using feedback in a controlled manner. These circuits are proven to be stable, and to only converge on valid states. We use the Hopfield electronic model since this is close to an actual implementation. We also discuss methods for incorporating these circuits into larger systems, neural and nonneural. By exploiting regularities in our definition, we can construct efficient networks. To demonstrate the methods, we look to three problems from communications. We first discuss two applications to problems from circuit switching; finding routes in large multistage switches, and the call rearrangement problem. These show both, how we can use many neurons to build massively parallel machines, and how the Winner-Take-All circuits can simplify our designs.
Next we develop a solution to the contention arbitration problem of high-speed packet switches. We define a useful class of switching networks and then design a neural network to solve the contention arbitration problem for this class. Various aspects of the neural network/switch system are analyzed to measure the queueing performance of this method. Using the basic design, a feasible architecture for a large (1024-input) ATM packet switch is presented. Using the massive parallelism of neural networks, we can consider algorithms that were previously computationally unattainable. These now viable algorithms lead us to new perspectives on switch design.