380 resultados para SELECTION PRESSURE
Resumo:
The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary-cycle geothermal applications could play a major role in the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration. Due to the temperature differences in geothermal resources a one-size-fits-all approach to surface power infrastructure is not appropriate. Furthermore, the traditional use of steam as a working fluid does not seem practical due to the low temperatures of many resources. A variety of organic fluids with low boiling points may be utilised as ORC working fluids in binary power cycle loops. Due to differences in thermodynamic properties, certain fluids are able to extract more heat from a given resource than others over certain temperature and pressure ranges. This enables the tailoring of power cycle infrastructure to best match the geothermal resource through careful selection of the working fluid and turbine design optimisation to yield the optimum overall cycle performance. This paper presents the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow turbines based on a selection of promising ORC cycles using five different high-density working fluids: R134a, R143a, R236fa, R245fa and n-Pentane at sub- or trans-critical conditions. Numerous studies published compare a variety of working fluids for various ORC configurations. However, there is little information specifically pertaining to the design and implementation of ORCs using realistic radial turbine designs in terms of pressure ratios, inlet pressure, rotor size and rotational speed. Preliminary 1D analysis leads to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139289 mm rotor diameter). The highest performing cycle (R134a) was found to produce 33% more net power from a 150°C resource flowing at 10 kg/s than the lowest performing cycle (n-Pentane).
Resumo:
Laboratory-based studies of human dietary behaviour benefit from highly controlled conditions; however, this approach can lack ecological validity. Identifying a reliable method to capture and quantify natural dietary behaviours represents an important challenge for researchers. In this study, we scrutinised cafeteria-style meals in the ‘Restaurant of the Future.’ Self-selected meals were weighed and photographed, both before and after consumption. Using standard portions of the same foods, these images were independently coded to produce accurate and reliable estimates of (i) initial self-served portions, and (ii) food remaining at the end of the meal. Plate cleaning was extremely common; in 86% of meals at least 90% of self-selected calories were consumed. Males ate a greater proportion of their self-selected meals than did females. Finally, when participants visited the restaurant more than once, the correspondence between selected portions was better predicted by the weight of the meal than by its energy content. These findings illustrate the potential benefits of meal photography in this context. However, they also highlight significant limitations, in particular, the need to exclude large amounts of data when one food obscures another.
Resumo:
On average, 560 fatal run-off-road crashes occur annually in Australia and 135 in New Zealand. In addition, there are more than 14,000 run-off-road crashes causing injuries each year across both countries. In rural areas, run-off-road casualty crashes constitute 50-60% of all casualty crashes. Their severity is particularly high with more than half of those involved sustaining fatal or serious injuries. This paper reviews the existing approach to roadside hazard risk assessment, selection of clear zones and hazard treatments. It proposes a modified approach to roadside safety evaluation and management. It is a methodology based on statistical modelling of run-off-road casualty crashes, and application of locally developed crash modification factors and severity indices. Clear zones, safety barriers and other roadside design/treatment options are evaluated with a view to minimise fatal and serious injuries – the key Safe System objective. The paper concludes with a practical demonstration of the proposed approach. The paper is based on findings from a four-year Austroads research project into improving roadside safety in the Safe System context.
Resumo:
The starting point for this presentation is that applicants provide a large surplus of information when submitting a NHMRC Project Grant proposal for funding. This is costly in their time, attracts high administration costs, makes the task appear daunting for peer reviewers and may reduce the quality of the peer review leading to less than perfect reliability in decision making. We are currently experimenting with alternate models to see whether similar reliability in funding outcomes are achieved at less cost. We will compare traditional NHMRC Grant Review Panels (GRPs) with panels that use less information and journal style panels. By way of background to this experimental work, we will show some results on current levels of reliability for GRPs, the costs incurred by all who participate in Project Grant selection, and the level of reliability acceptable to researchers. By experimenting in this way and building an evidence base for how research funding should be allocated, the NHMRC is showing international leadership in this important field.
Resumo:
Objective: To determine the prevalence, severity, location, etiology, treatment, and healing of medical device-related pressure ulcers in intensive care patients for up to 7 days. Design: Prospective repeated measures study. Setting and participants: Patients in 6 intensive care units of 2 major medical centers, one each in Australia and the United States, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily up to 7 days. Outcome measures: Device-related ulcer prevalence, pain, infection, treatment, healing. Results: 15/483 patients had device-related ulcers and 9/15 with 11 ulcers were followed beyond screening. Their mean age was 60.5 years, most were men, over-weight, and at increased pressure ulcer risk. Endotracheal and nasogastric tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. 4/11 ulcers healed within the 7 day observation period. Conclusion: Device-related ulcer prevalence was 3.1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with nasogastric and endotracheal tubes.
Resumo:
Accelerating a project can be rewarding. The consequences, however, can be troublesome if productivity and quality are sacrificed for the sake of remaining ahead of schedule, such that the actual schedule benefits are often barely worth the effort. The tradeoffs and paths of schedule pressure and its causes and effects are often overlooked when schedule decisions are being made. This paper analyses the effects that schedule pressure has on construction performance, and focuses on tradeoffs in scheduling. A research framework has been developed using a causal diagram to illustrate the cause-and-effect analysis of schedule pressure. An empirical investigation has been performed by using survey data collected from 102 construction practitioners working in 38 construction sites in Singapore. The results of this survey data analysis indicate that advantages of increasing the pace of work—by working under schedule pressure—can be offset by losses in productivity and quality. The negative effects of schedule pressure arise mainly by working out of sequence, generating work defects, cutting corners, and losing the motivation to work. The adverse effects of schedule pressure can be minimized by scheduling construction activities realistically and planning them proactively, motivating workers, and by establishing an effective project coordination and communication mechanism.
Resumo:
The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.
Resumo:
Suggests an alternative and computationally simpler approach of non-random sampling of labour economics and represents an observed outcome of an individual female′s choice of whether or not to participate in the labour market. Concludes that there is an alternative to the Heckman two-step estimator.
Resumo:
Background: Critically ill patients are at high risk for pressure ulcer (PrU) development due to their high acuity and the invasive nature of the multiple interventions and therapies they receive. With reported incidence rates of PrU development in the adult critical care population as high as 56%, the identification of patients at high risk of PrU development is essential. This paper will explore the association between PrU development and risk factors. It will also explore PrU development and the use of risk assessment scales for critically ill patients in adult intensive care units. Method: A literature search from 2000 to 2012 using the CINHAL, Cochrane Library, EBSCOHost, Medline (via EBSCOHost), PubMed, ProQuest and Google Scholar databases was conducted. Key words used were: pressure ulcer/s; pressure sore/s; decubitus ulcer/s; bed sore/s; critical care; intensive care; critical illness; prevalence; incidence; prevention; management; risk factor; risk assessment scale. Results: Nineteen articles were included in this review; eight studies addressing PrU risk factors, eight studies addressing risk assessment scales and three studies overlapping both. Results from the studies reviewed identified 28 intrinsic and extrinsic risk factors which may lead to PrU development. Development of a risk factor prediction model in this patient population, although beneficial, appears problematic due to many issues such as diverse diagnoses and subsequent patient needs. Additionally, several risk assessment instruments have been developed for early screening of patients at higher risk of developing PrU in the ICU. No existing risk assessment scales are valid for identification high risk critically ill patient,with the majority of scales potentially over-predicting patients at risk for PrU development. Conclusion: Research studies to inform the risk factors for potential pressure ulcer development are inconsistent. Additionally, there is no consistent or clear evidence which demonstrates any scale to better or more effective than another when used to identify the patients at risk for PrU development. Furthermore robust research is needed to identify the risk factors and develop valid scales for measuring the risk of PrU development in ICU.
Resumo:
Previously, expected satiety (ES) has been measured using software and two-dimensional pictures presented on a computer screen. In this context, ES is an excellent predictor of self-selected portions, when quantified using similar images and similar software. In the present study we sought to establish the veracity of ES as a predictor of behaviours associated with real foods. Participants (N = 30) used computer software to assess their ES and ideal portion of three familiar foods. A real bowl of one food (pasta and sauce) was then presented and participants self-selected an ideal portion size. They then consumed the portion ad libitum. Additional measures of appetite, expected and actual liking, novelty, and reward, were also taken. Importantly, our screen-based measures of expected satiety and ideal portion size were both significantly related to intake (p < .05). By contrast, measures of liking were relatively poor predictors (p > .05). In addition, consistent with previous studies, the majority (90%) of participants engaged in plate cleaning. Of these, 29.6% consumed more when prompted by the experimenter. Together, these findings further validate the use of screen-based measures to explore determinants of portion-size selection and energy intake in humans.
Resumo:
Objective: The present study investigated the foot health of the Kaimanawa feral horse population and tested the hypotheses that horses would have a large range of foot morphology and that the incidence of foot abnormality would be significantly high. Procedures: Abnormality was defined as a variation from what the two veterinarian assessors considered as optimal morphology and which was considered to impact negatively on the structure and/or function of the foot. Fifteen morphometric variables were measured on four calibrated photographic views of all four feet of 20 adult Kaimanawa feral horses. Four morphometric variables were measured from the lateromedial radiographs of the left forefoot of each horse. In addition, the study identified the incidence of gross abnormality observed on the photographs and radiographs of all 80 feet. Results: There was a large variation between horses in the morphometric dimensions, indicating an inconsistent foot type. Mean hoof variables were outside the normal range recommended by veterinarians and hoof care providers; 35% of all feet had a long toe conformation and 15% had a mediolateral imbalance. Abnormalities included lateral (85% of horses) and dorsal (90% of horses) wall flares, presence of laminar rings (80% of horses) and bull-nose tip of the distal phalanx (75% of horses). Both hypotheses were therefore accepted. Conclusions: The Kaimanawa feral horse population demonstrated a broad range of foot abnormalities and we propose that one reason for the questionable foot health and conformation is lack of abrasive wearing by the environment. In comparison with other feral horse populations in Australia and America there may be less pressure on the natural selection of the foot of the Kaimanawa horses by the forgiving environment of the Kaimanawa Ranges. Contrary to popular belief, the feral horse foot type should not be used as an ideal model for the domestic horse foot.
Resumo:
Two approaches are described, which aid the selection of the most appropriate procurement arrangements for a building project. The first is a multi-attribute technique based on the National Economic Development Office procurement path decision chart. A small study is described in which the utility factors involved were weighted by averaging the scores of five 'experts' for three hypothetical building projects. A concordance analysis is used to provide some evidence of any abnormal data sources. When applied to the study data, one of the experts was seen to be atypical. The second approach is by means of discriminant analysis. This was found to provide reasonably consistent predictions through three discriminant functions. The analysis also showed the quality criteria to have no significant impact on the decision process. Both approaches provided identical and intuitively correct answers in the study described. Some concluding remarks are made on the potential of discriminant analysis for future research and development in procurement selection techniques.