277 resultados para Project management
Resumo:
Decision Support System (DSS) has played a significant role in construction project management. This has been proven that a lot of DSS systems have been implemented throughout the whole construction project life cycle. However, most research only concentrated in model development and left few fundamental aspects in Information System development. As a result, the output of researches are complicated to be adopted by lay person particularly those whom come from a non-technical background. Hence, a DSS should hide the abstraction and complexity of DSS models by providing a more useful system which incorporated user oriented system. To demonstrate a desirable architecture of DSS particularly in public sector planning, we aim to propose a generic DSS framework for consultant selection. It will focus on the engagement of engineering consultant for irrigation and drainage infrastructure. The DSS framework comprise from operational decision to strategic decision level. The expected result of the research will provide a robust framework of DSS for consultant selection. In addition, the paper also discussed other issues that related to the existing DSS framework by integrating enabling technologies from computing. This paper is based on the preliminary case study conducted via literature review and archival documents at Department of Irrigation and Drainage (DID) Malaysia. The paper will directly affect to the enhancement of consultant pre-qualification assessment and selection tools. By the introduction of DSS in this area, the selection process will be more efficient in time, intuitively aided qualitative judgment, and transparent decision through aggregation of decision among stakeholders.
Resumo:
When complex projects go wrong they can go horribly wrong with severe financial consequences. We are undertaking research to develop leading performance indicators for complex projects, metrics to provide early warning of potential difficulties. The assessment of success of complex projects can be made by a range of stakeholders over different time scales, against different levels of project results: the project’s outputs at the end of the project; the project’s outcomes in the months following project completion; and the project’s impact in the years following completion. We aim to identify leading performance indicators, which may include both success criteria and success factors, and which can be measured by the project team during project delivery to forecast success as assessed by key stakeholders in the days, months and years following the project. The hope is the leading performance indicators will act as alarm bells to show if a project is diverting from plan so early corrective action can be taken. It may be that different combinations of the leading performance indicators will be appropriate depending on the nature of project complexity. In this paper we develop a new model of project success, whereby success is assessed by different stakeholders over different time frames against different levels of project results. We then relate this to measurements that can be taken during project delivery. A methodology is described to evaluate the early parts of this model. Its implications and limitations are described. This paper describes work in progress.
Resumo:
Managing through projects has become important for generating new knowledge to cope with technological and market discontinuities. This paper examines how the fit between the creation of technological and market knowledge and important project management characteristics, i.e. project autonomy and completion criteria, influences the success of new business development (NBD) projects. In-depth longitudinal case research on NBD projects commercialised from 1993 to 2003 in the consumer electronics industry highlights that project management characteristics focusing only on the creation of technological knowledge contributed to the failure of those NBD projects that required new market knowledge as well. The findings indicate that senior management support and engaging in an alliance with partners possessing complementary market knowledge can offset this misalignment of the organisation of NBD projects.
Resumo:
Purpose – The paper describes a project created to enhance e-research support activities within an Australian university, based on environmental scanning of e-research activities and funding both nationally and internationally. Participation by the university library is also described.----- Design/methodology/approach – The paper uses a case study that describes the stages of a project undertaken to develop an academic library’s capacity to offer e-research support to its institution’s research community.----- Findings – While the outcomes of the project have been successfully achieved, the work needs to be continued and eventually mainstreamed as core business in order to keep pace with developments in e-research. The continual skilling up of the university’s researchers and research support staff in e-research activities is imperative in reaching the goal of becoming a highly competitive research institution.----- Research limitations/implications – Although a single case study, the work has been contextualised within the national research agenda.----- Practical implications – The paper provides a project model that can adapted within an academic library without external or specialist skills. It is also scalable and can be applied at a divisional or broader level.----- Originality/value – The paper highlights the drivers for research investment in Australia and provides a model of how building e-research support activities can leverage this investment and contribute towards successful research activity.
Resumo:
Road and highway infrastructure provides the backbone for a nation’s economic growth. The versatile dispersion of population in Australia and its resource boom, coupled with improved living standards and growing societal expectations, calls for continuing development and improvement of road infrastructure under the current local, state and federal governments’ policies and strategic plans. As road infrastructure projects involve huge resources and mechanisms, achieving sustainability not only on economic scales but also through environmental and social responsibility becomes a crucial issue. While sustainability is a logical link to infrastructure development, literature study and consultation with the industry found that there is a lack of common understanding on what constitutes sustainability in the infrastructure context. Its priorities are often interpreted differently among multiple stakeholders. For road infrastructure projects which typically span over long periods of time, achieving tangible sustainability outcomes during the lifecycle of development remains a formidable task. Sustainable development initiatives often remain ideological as in macro-level policies and broad-based concepts. There were little elaboration and exemplar cases on how these policies and concepts can be translated into practical decision-making during project implementation. In contrast, there seemed to be over commitment on research and development of sustainability assessment methods and tools. Between the two positions, there is a perception-reality gap and mismatch, specifically on how to enhance sustainability deliverables during infrastructure project delivery. Review on past research in this industry sector also found that little has been done to promote sustainable road infrastructure development; this has wide and varied potential impacts. This research identified the common perceptions and expectations by different stakeholders towards achieving sustainability in road and highway infrastructure projects. Face to face interviews on selected representatives of these stakeholders were carried out in order to select and categorize, confirm and prioritize a list of sustainability performance targets identified through literature and past research. A Delphi study was conducted with the assistance of a panel of senior industry professionals and academic experts, which further considered the interrelationship and influence of the sustainability indicators, and identified critical sustainability indicators under ten critical sustainability criteria (e.g. Environmental, Health & Safety, Resource Utilization & Management, Social & Cultural, Economic, Public Governance & Community Engagement, Relations Management, Engineering, Institutional and Project Management). This presented critical sustainability issues that needed to be addressed at the project level. Accordingly, exemplar highway development projects were used as case studies to elicit solutions for the critical issues. Through the identification and integration of different perceptions and priority needs of the stakeholders, as well as key sustainability indicators and solutions for critical issues, a set of decision-making guidelines was developed to promote and drive consistent sustainability deliverables in road infrastructure projects.
Resumo:
Construction clients often use financial incentives to encourage stakeholder motivation and commitment to voluntary higher-order project goals. Despite the increased use of financial incentives, there is little literature addressing means of optimizing outcomes. Using a case study methodology, the examination of a successful Australian construction project demonstrates the features of a positively geared procurement approach that promotes the effectiveness of financial incentives. The research results show that if the incentive system is perceived to be fair and is applied to reward exceptional performance, and not to manipulate, then contractors are more likely to be positively motivated.
Resumo:
The extent of poor project outcomes is a recurring issue for construction industries worldwide. One of the main causes of these and project failure seems to be the inability of contractors to provide a high level of service quality to the project team. In Malaysia, design failures have also been identified as a further contributory factor. To overcome this, different types of subjective performance measurement have been progressively developed. These approaches are typically concerned with client satisfaction, customer satisfaction, home buyer satisfaction and occupant satisfaction, but very seldom consider contractor satisfaction. This paper examines the implications of this, and what is involved in developing satisfaction measures based on contractor perception instead of the typical sole concern with client performance. As a result, other attributes such as participants’ performance, business performance, project performance, external factors and contractor characteristics are also examined. Several potential attributes are derived from interviews among Malaysian contractors, namely: performance (direct attributes) and contractor characteristics (indirect attributes) that possibly influence contractor satisfaction levels. These attributes are then developed to improve the existing conceptual framework. The developed framework is expected to help the project team in performing projects more efficiently, maintaining service quality and improving relationships between participants. In addition, the findings of the paper should assist contractors enhance competitiveness, improve their image and create more job opportunities in the future.
Resumo:
Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.
Resumo:
Value Management (VM) has been proven to provide a structured framework, together with supporting tools and techniques that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. It is identified at International level as a natural career progression for the construction service provider and as an opportunity in developing leading-edge skills. The services offered by contractors and consultants in the construction sector have been expanding. In an increasingly competitive and global marketplace, firms are seeking ways to differentiate their services to ever more knowledgeable and demanding clients. The traditional demarcations have given way, and the old definition of what contractors, designers, engineers and quantity surveyors can, and cannot do in terms of their market offering has changed. Project management, design and cost and safety consultancy services, are being delivered by a diverse range of suppliers. Value management services have been developing in various sectors in industry; from manufacturing to the military and now construction. Given the growing evidence that VM has been successful in delivering value-for-money to the client, VM would appear to be gaining some momentum as an essential management tool in the Malaysian construction sector. The recently issued VM Circular 3/2009 by the Economic Planning Unit Malaysia (EPU) possibly marks a new beginning in public sector client acceptance on the strength of VM in construction. This paper therefore attempts to study the prospects of marketing the benefits of VM by construction service providers, and how it may provide an edge in an increasingly competitive Malaysian construction industry.
Resumo:
Software used by architectural and industrial designers – has moved from becoming a tool for drafting, towards use in verification, simulation, project management and project sharing remotely. In more advanced models, parameters for the designed object can be adjusted so a family of variations can be produced rapidly. With advances in computer aided design technology, numerous design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to both leverage specialized design knowledge from various discipline domains (known as expert knowledge systems) and support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques to record and respond to a designer’s own way of working and design history. It is expected that this will lead to results that impact on future work on design support systems-(ergonomics and interface) as well as implicit constraint and problem definition for problems that are difficult to quantify.
Resumo:
The Australian construction industry is characterized as being a competitive and risky business environment due to lack of cooperation, insufficient trust, ineffective communication and adversarial relationships which are likely lead to poor project performance. Relational contracting (RC) is advocated by literature as an innovative approach to improve the procurement process in the construction industry. Various studies have collectively added to the current knowledge of known RC norms, but there seem to be little effort on investigating the determinants of RC and its impact on project outcomes. In such circumstances, there is lack of evidence and explanation on the manner on how these issues lead to different performance. Simultaneously, the New Engineering Contract (NEC) that embraced the concept of RC is seen as a modern way of contracting and also considered as one of the best approaches to the perennial problem of improving adversarial relationships within the industry. The reality of practice of RC in Australia is investigated through the lens of the NEC. A synthesis of literature views on the concept, processes and tools of RC is first conducted to develop the framework of RC. A case study approach is proposed for an in-depth analysis to explore the critical issues addressed by RC in relation to project performance. Understanding the realities of RC will assist stakeholders in the construction industry with their investment in RC.
Resumo:
The unique characteristics of the construction industry - such as the fragmentation of its processes, varied scope of works and diversity of its participants - are contributory factors to poor project performance. Several issues are unresolved due to the lack of a comprehensive technique to measure project outcomes including: inefficient decision making, insufficient communication, uncertain site conditions, a continuously changing environment, inharmonious working relationships, mismatched objectives within the project team and a blame culture. One approach to overcoming these problems appears to be to measure performance by gauging contractor satisfaction (Co-S) levels, but this has not been widely investigated as yet. Additionally, the key Co-S dimensions at the project level are still not fully identified. ----- ----- This paper concerns a study of satisfaction dimensions, primarily by a postal questionnaire survey of construction contractors registered by the Malaysian Construction Industry Development Board (CIDB). Eight satisfaction dimensions are identified that are significantly and substantially relate to these contractors - comprising: project cost performance, schedule performance, product performance, design satisfaction, site safety, project profitability, business performance and relationships between participants. -Each of these dimensions is accorded different priority levels of satisfaction by different contractors. ----- ----- The output of this study will be useful in raising the awareness and understanding of project teams regarding contractors’ needs, mutual objectives and open communication to help to deliver a successful project.