181 resultados para Piezoelectric sensor
Resumo:
Background Assessing hand injury is of great interest given the level of involvement of the hand with the environment. Knowing different assessment systems and their limitations generates new perspectives. The integration of digital systems (accelerometry and electromyography) as a tool to supplement functional assessment allows the clinician to know more about the motor component and its relation to movement. Therefore, the purpose of this study was the kinematic and electromyography analysis during functional hand movements. Method Ten subjects carried out six functional movements (terminal pinch, termino-lateral pinch, tripod pinch, power grip, extension grip and ball grip). Muscle activity (hand and forearm) was measured in real time using electromyograms, acquired with the Mega ME 6000, whilst acceleration was measured using the AcceleGlove. Results Electrical activity and acceleration variables were recorded simultaneously during the carrying out of the functional movements. The acceleration outcome variables were the modular vectors of each finger of the hand and the palm. In the electromyography, the main variables were normalized by the mean and by the maximum muscle activity of the thenar region, hypothenar, first interosseous dorsal, wrist flexors, carpal flexors and wrist extensors. Conclusions Knowing muscle behavior allows the clinician to take a more direct approach in the treatment. Based on the results, the tripod grip shows greater kinetic activity and the middle finger is the most relevant in this regard. Ball grip involves most muscle activity, with the thenar region playing a fundamental role in hand activity. Clinical relevance Relating muscle activation, movements, individual load and displacement offers the possibility to proceed with rehabilitation by individual component.
Resumo:
2,4,6-trinitrotoluene (TNT) is one of the most commonly used nitro aromatic explosives in landmine, military and mining industry. This article demonstrates rapid and selective identification of TNT by surface-enhanced Raman spectroscopy (SERS) using 6-aminohexanethiol (AHT) as a new recognition molecule. First, Meisenheimer complex formation between AHT and TNT is confirmed by the development of pink colour and appearance of new band around 500 nm in UV-visible spectrum. Solution Raman spectroscopy study also supported the AHT:TNT complex formation by demonstrating changes in the vibrational stretching of AHT molecule between 2800-3000 cm−1. For surface enhanced Raman spectroscopy analysis, a self-assembled monolayer (SAM) of AHT is formed over the gold nanostructure (AuNS) SERS substrate in order to selectively capture TNT onto the surface. Electrochemical desorption and X-ray photoelectron studies are performed over AHT SAM modified surface to examine the presence of free amine groups with appropriate orientation for complex formation. Further, AHT and butanethiol (BT) mixed monolayer system is explored to improve the AHT:TNT complex formation efficiency. Using a 9:1 AHT:BT mixed monolayer, a very low detection limit (LOD) of 100 fM TNT was realized. The new method delivers high selectivity towards TNT over 2,4 DNT and picric acid. Finally, real sample analysis is demonstrated by the extraction and SERS detection of 302 pM of TNT from spiked.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
This paper presents the fabrication and study of a Schottky diode based on Pt/WO3 nanoplatelet/SiC for H2 gas sensing applications. The nanostructured WO3 films were synthesized from tungsten (sputtered on SiC) via an acidetching method using a 1.5 M HNO3 solution. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. The current-voltage characteristic and dynamic response of the diodes were measured in the presence of air and 1% H2 gas balanced in air from 25 to 300°C. Upon exposure to 1% H2, voltage shifts of 0.64, 0.93 and 1.14 V were recorded at temperatures of 120, 200 and 300°C, respectively at a constant forward bias current of 500 μA.
Resumo:
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training.
Resumo:
We address the problem of the rangefinder-based avoidance of unforeseen static obstacles during a visual navigation task. We extend previous strategies which are efficient in most cases but remain still hampered by some drawbacks (e.g., risks of collisions or of local minima in some particular cases, etc.). The key idea is to complete the control strategy by adding a controller providing the robot some anticipative skills to guarantee non collision and by defining more general transition conditions to deal with local minima. Simulation results show the proposed strategy efficiency.
Resumo:
The piezoelectric composite material could engender stress concentration resulting from small cracks during layers easily, as the cracks growth will lead to the failure of the whole structure. In this paper, a finite element model for piezoelectric composite materials by ABAQUS including interlayer crack was established, and the J integral and crack tip stress of different types PZT patches were calculated by using the equivalent integral method. Then, the J integral for adhesive layers with different thickness, elastic modulus considering and not considering piezoelectricity was investigated. The results show that the J integral of mode I, II reduces with thicker adhesive layer and lower elastic modules, and the J integral of mode II decreases more sharply than that of mode I.
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.
Resumo:
Imbalance is not only a direct major cause of downtime in wind turbines, but also accelerates the degradation of neighbouring and downstream components (e.g. main bearing, generator). Along with detection, the imbalance quantification is also essential as some residual imbalance always exist even in a healthy turbine. Three different commonly used sensor technologies (vibration, acoustic emission and electrical measurements) are investigated in this work to verify their sensitivity to different imbalance grades. This study is based on data obtained by experimental tests performed on a small scale wind turbine drive train test-rig for different shaft speeds and imbalance levels. According to the analysis results, electrical measurements seem to be the most suitable for tracking the development of imbalance.