528 resultados para Ocean engineering.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growing importance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growingimportance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is a complex, living, constantly changing tissue. Bone consists of cancellous and cortical bone. This architecture allows the skeleton to perform its essential mechanical functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internationally the railway industry is facing a severe shortage of engineers with high level, relevant, profession and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level program has been created to meet that global need via a fully online, distance education format. The development and operation of this Master of Engineering degree is proposed as a model of the process needed for the industry-relevance, flexible delivery, international networking, and professional development required for a successful graduate engineering program in the 21st century. In particular, the paper demonstrates how a mix of new and more familiar technologies are utilised through a variety of tasks to overcome the huge distances and multiple time zones that separate the participants across a growing number of countries, successfully achieving close and sustained interaction amongst the participants and railway experts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skipjack (SJT) (Katsuwonus pelamis) is a medium sized, pelagic, highly dispersive tuna species that occurs widely across tropical and subtropical waters. SJT constitute the largest tuna fishery in the Indian Ocean, and are currently managed as a single stock. Patterns of genetic variation in a mtDNA gene and 6 microsatellite loci were examined to test for stock structure in the northwestern Indian Ocean. 324 individuals were sampled from five major fishing grounds around Sri Lanka, and single sites in the Maldive Islands and the Laccadive Islands. Phylogenetic reconstruction of mtDNA revealed two coexisting divergent clades in the region. AMOVA (Analysis of Molecular Variance) of mtDNA data revealed significant genetic differentiation among sites (ΦST = 0.2029, P < 0.0001), also supported by SAMOVA results. AMOVA of microsatellite data also showed significant differentiation among most sampled sites (FST = 0.0256, P<0.001) consistent with the mtDNA pattern. STRUCTURE analysis of the microsatellite data revealed two differentiated stocks. While the both two marker types examined identified two genetic groups, microsatellite analysis indicates that the sampled SJT are likely to represent individuals sourced from discrete breeding grounds that are mixed in feeding grounds in Sri Lankan waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach aimed at enhancing learning by matching individual students' preferred cognitive styles to computer-based instructional (CBI) material is presented. This approach was used in teaching some components of a third-year unit in an electrical engineering course at the Queensland University of Technology. Cognitive style characteristics of perceiving and processing information were considered. The bimodal nature of cognitive styles (analytic/imager, analytic/verbalizer, wholist/imager and wholist/verbalizer) was examined in order to assess the full ramification of cognitive styles on learning. In a quasi-experimental format, students' cognitive styles were analysed by cognitive style analysis (CSA) software. On the basis of the CSA results the system defaulted students to either matched or mismatched CBI material. The consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. Analysing the differences between cognitive styles on individual test tasks also suggests that certain test tasks may better suit certain cognitive styles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auto rickshaws (3-wheelers) are the most sought after transport among the urban and rural poor in India. The assembly of the vehicle involves assemblies of several major components. The L-angle is the component that connects the front panel with the vehicle floor. Current L-angle part has been observed to experience permanent deformation failure over period of time. This paper studies the effect of the addition of stiffeners on the L-angle to increase the strength of the component. A physical model of the L-angle was reversed engineered and modelled in CAD before static loading analysis were carried out on the model using finite element analysis. The modified L-angle fitted with stiffeners was shown to be able to withstand more load compare to previous design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increasing interest in objects within the HCI field particularly with a view to designing tangible interfaces. However, little is known about how people make sense of objects and how objects support thinking. This paper presents a study of groups of engineers using physical objects to prototype designs, and articulates the roles that physical objects play in supporting their design thinking and communications. The study finds that design thinking is heavily dependent upon physical objects, that designers are active and opportunistic in seeking out physical props and that the interpretation and use of an object depends heavily on the activity. The paper discusses the trade-offs that designers make between speed and accuracy of models, and specificity and generality in choice of representations. Implications for design of tangible interfaces are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell based therapies for bone regeneration are an exciting emerging technology, but the availability of osteogenic cells is limited and an ideal cell source has not been identified. Amniotic fluid-derived stem (AFS) cells and bone-marrow derived mesenchymal stem cells (MSCs) were compared to determine their osteogenic differentiation capacity in both 2D and 3D environments. In 2D culture, the AFS cells produced more mineralized matrix but delayed peaks in osteogenic markers. Cells were also cultured on 3D scaffolds constructed of poly-e-caprolactone for 15 weeks. MSCs differentiated more quickly than AFS cells on 3D scaffolds, but mineralized matrix production slowed considerably after 5 weeks. In contrast, the rate of AFS cell mineralization continued to increase out to 15 weeks, at which time AFS constructs contained 5-fold more mineralized matrix than MSC constructs. Therefore, cell source should be taken into consideration when used for cell therapy, as the MSCs would be a good choice for immediate matrix production, but the AFS cells would continue robust mineralization for an extended period of time. This study demonstrates that stem cell source can dramatically influence the magnitude and rate of osteogenic differentiation in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.