251 resultados para Numerical Algorithms and Problems
Resumo:
Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Advances in solid-state switches and power electronics techniques have led to the development of compact, efficient and more reliable pulsed power systems. Although, the power rating and operation speed of the new solid-state switches are considerably increased, their low blocking voltage level puts a limits in the pulsed power operation. This paper proposes the advantage of parallel and series configurations of pulsed power modules in obtaining high voltage levels with fast rise time (dv/dt) using only conventional switches. The proposed configuration is based on two flyback modules. The effectiveness of the proposed approach is verified by numerical simulations, and the advantages of each configuration are indicated in comparison with a single module.
Resumo:
Graphene nanoribbon (GNR) with free edges can exhibit non-flat morphologies due to pre-existing edge stress. Using molecular dynamics (MD) simulations, we investigate the free-edge effect on the shape transition in GNRs with different edge types, including regular (armchair and zigzag), armchair terminated with hydrogen and reconstructed armchair. The results show that initial edge stress and energy are dependent on the edge configurations. It is confirmed that pre-strain on the free edges is a possible way to limit the random shape transition of GNRs. In addition, the influence of surface attachment on the shape transition is also investigated in this work. It is found that surface attachment can lead to periodic ripples in GNRs, dependent on the initial edge configurations.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
In this chapter, we will present a contemporary review of the hitherto numerical characterization of nanowires (NWs). The bulk of the research reported in the literatures concern metallic NWs including Al, Cu, Au, Ag, Ni, and their alloys NWs. Research has also been reported for the investigation of some nonmetallic NWs, such as ZnO, GaN, SiC, SiO2. A plenty of researches have been conducted regarding the numerical investigation of NWs. Issues analyzed include structural changes under different loading situations, the formation and propagation of dislocations, and the effect of the magnitude of applied loading on deformation mechanics. Efforts have also been made to correlate simulation results with experimental measurements. However, direct comparisons are difficult since most simulations are carried out under conditions of extremely high strain/loading rates and small simulation samples due to computational limitations. Despite of the immense numerical studies of NWs, a significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behavior. In this chapter, we present an introduction of the commonly adopted experimental and numerical approaches in studies of the deformation of NWs in Section 1. An overview of findings concerning perfect NWs under different loading situations, such as tension, compression, torsion, and bending are presented in Section 2. In Section 3, we will detail some recent results from the authors’ own work with an emphasis on the study of influences from different pre-existing defect on NWs. Some thoughts on future directions of the computational mechanics of NWs together with Conclusions will be given in the last section.
Resumo:
We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.
Resumo:
Topic modeling has been widely utilized in the fields of information retrieval, text mining, text classification etc. Most existing statistical topic modeling methods such as LDA and pLSA generate a term based representation to represent a topic by selecting single words from multinomial word distribution over this topic. There are two main shortcomings: firstly, popular or common words occur very often across different topics that bring ambiguity to understand topics; secondly, single words lack coherent semantic meaning to accurately represent topics. In order to overcome these problems, in this paper, we propose a two-stage model that combines text mining and pattern mining with statistical modeling to generate more discriminative and semantic rich topic representations. Experiments show that the optimized topic representations generated by the proposed methods outperform the typical statistical topic modeling method LDA in terms of accuracy and certainty.
Resumo:
Adequate amount of graphene oxide (GO) was firstly prepared by oxidation of graphite and GO/epoxy nanocomposites were subsequently prepared by typical solution mixing technique. X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphite oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. Mechanical properties of as prepared GO/epoxy nanocomposites were investigated. Significant improvements in both Young’s modulus and tensile strength were observed for the nanocomposites at very low level of GO loading. The Young’s modulus of the nanocomposites containing 0.5 wt% GO was 1.72 GPa, which was 35 % higher than that of the pure epoxy resin (1.28 GPa). The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices.
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.
Resumo:
This thesis improves the process of recommending people to people in social networks using new clustering algorithms and ranking methods. The proposed system and methods are evaluated on the data collected from a real life social network. The empirical analysis of this research confirms that the proposed system and methods achieved improvements in the accuracy and efficiency of matching and recommending people, and overcome some of the problems that social matching systems usually suffer.
Resumo:
The findings presented in this paper are part of a research project designed to provide a preliminary indication of the support needs of postdiagnosis women with breast cancer in remote and isolated areas in Queensland. This discussion will present data that focuses on the women’s expressed personal concerns. For participants in this research a diagnosis of breast cancer involves a confrontation with their own mortality and the possibility of a reduced life span. This is a definite life crisis, creating shock and needing considerable adjustment. Along with these generic issues the participants also articulated significant issues in relation to their experience as women in a rural setting. These concerns centred around worries about how their partner and families cope during their absences for treatment, the additional burden on the family of having to cope with running the property or farm during the participant’s absence or illness, added financial strain brought about by the cost of travel for treatment, maintenance of properties during absences, and problems created by time off from properties or self-employment. These findings accord with other reports of health and welfare services for rural Australian and the generic literature on psycho-oncology studies of breast cancer.
Resumo:
The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.
Resumo:
This paper details the processes and challenges involved in collecting inventory data from smallholder and community woodlots on Leyte Island, Philippines. Over the period from 2005 through to 2012, 253 woodlots at 170 sites were sampled as part of a large multidisciplinary project, resulting in a substantial timber inventory database. The inventory was undertaken to provide information for three separate but interrelated studies, namely (1) tree growth, performance and timber availability from private smallholder woodlots on Leyte Island; (2) tree growth and performance of mixed-species plantings of native species; and (3) the assessment of reforestation outcomes from various forms of reforestation. A common procedure for establishing plots within each site was developed and applied in each study, although the basis of site selection varied. A two-stage probability proportion to size sampling framework was developed to select smallholder woodlots for inclusion in the inventory. In contrast, community-based forestry woodlots were selected using stratified random sampling. Challenges encountered in undertaking the inventory were mostly associated with the need to consult widely before the commencement of the inventory and problems in identifying woodlots for inclusion. Most smallholder woodlots were only capable of producing merchantable volumes of less than 44 % of the site potential due to a lack of appropriate silviculture. There was a clear bimodal distribution of proportion that the woodlots comprised of the total smallholding area. This bimodality reflects two major motivations for smallholders to establish woodlots, namely timber production and to secure land tenure.