234 resultados para NUCLEAR MATERIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic light emitting diodes (OLEDs), as an emerging technology for display and solid state lighting application, have many advantages including self-emission, lightweight, flexibility, low driving voltage, low power consumption, and low production cost. With the advancement of light emitting materials development and device architecture optimization, mobile phones and televisions based on OLED technology are already in the market. However, to obtain efficient, stable and pure blue emission than producing lower-energy colors is still one of the important subjects of these challenges. Full color and pure white light can be achieved only having stable blue emitting materials. To address this issue, significant effort has been devoted to develop novel blue light emitting materials in the past decade aiming at further improving device efficiency, color quality of emission light, and device lifetime. This review focuses on recent efforts of synthesis and device performance of small molecules, oligomers and polymers for blue emission of organic electroluminescent devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the design and synthesis of isoindigo based low band gap polymer semiconductors, poly{N,N′-(2-octyldodecyl)-isoindigo-alt- naphthalene} (PISD-NAP) and poly{N,N′-(2-octyldodecyl)-isoindigo-alt- anthracene} (PISD-ANT). A series of donor-acceptor (D-A) copolymers can be prepared where donor and acceptor conjugated blocks can be attached alternately using organometallic coupling. In these polymers, an isoindigo dye acceptor moiety has been attached alternately with naphthalene and anthracene donor comonomer blocks by Suzuki coupling. PISD-NAP and PISD-ANT exhibit excellent solution processibility and good film-forming properties. Gel permeation chromatography exhibits a higher molecular mass with lower polydispersity. UV-vis-NIR absorption of these polymers exhibits a wide absorption band ranging from 300 nm to 800 nm, indicating the low band gap nature of the polymers. Optical band gaps calculated from the solid state absorption cutoff value for PISD-NAP and PISD-ANT are around 1.80 eV and 1.75 eV, respectively. Highest occupied molecular orbital (HOMO) values calculated respectively for PISD-NAP and PISD-ANT thin films on glass substrate by photoelectron spectroscopy in air (PESA) are 5.66 eV and 5.53 eV, indicative of the good stability of these materials in organic electronic device applications. These polymers exhibit p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices in ambient conditions. The highest hole mobility of 0.013 cm2 V-1 s-1 is achieved in top contact and bottom-gate OTFT devices for PISD-ANT, whereas polymer PISD-NAP exhibited a hole mobility of 0.004 cm2 V -1 s-1. When these polymer semiconductors were used as a donor and PC71BM as an acceptor in OPV devices, the highest power conversion efficiency (PCE) of 1.13% is obtained for the PISD-ANT polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim A recent Monte Carlo based study has shown that it is possible to design a diode that measures small field output factors equivalent to that in water. This is accomplished by placing an appropriate sized air gap above the silicon chip (1) with experimental results subsequently confirming that a particular Monte Carlo design was accurate (2). The aim of this work was to test if a new correction-less diode could be designed using an entirely experimental methodology. Method: All measurements were performed on a Varian iX at a depth of 5 cm, SSD of 95 cm and field sizes of 5, 6, 8, 10, 20 and 30 mm. Firstly, the experimental transfer of kq,clin,kq,msr from a commonly used diode detector (IBA, stereotactic field diode (SFD)) to another diode detector (Sun Nuclear, unshielded diode, (EDGEe)) was tested. These results were compared to Monte Carlo calculated values of the EDGEe. Secondly, the air gap above the EDGEe silicon chip was optimised empirically. Nine different air gap “tops” were placed above the EDGEe (air depth = 0.3, 0.6, 0.9 mm; air width = 3.06, 4.59, 6.13 mm). The sensitivity of the EDGEe was plotted as a function of air gap thickness for the field sizes measured. Results: The transfer of kq,clin,kq,msr from the SFD to the EDGEe was correct to within the simulation and measurement uncertainties. The EDGEe detector can be made “correction-less” for field sizes of 5 and 6 mm, but was ∼2% from being “correction-less” at field sizes of 8 and 10 mm. Conclusion Different materials will perturb small fields in different ways. A detector is only “correction-less” if all these perturbations happen to cancel out. Designing a “correction-less” diode is a complicated process, thus it is reasonable to expect that Monte Carlo simulations should play an important role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the construction and reconstruction of identities of new and existing employees during a significant transition phase of a nuclear engineering organization. We followed a group of new and existing employees over the period of three years, during which the organization constructed a greenfield nuclear facility with new generational technologies whilst in parallel, decommissioned the older reactor. This change led to the transfer and integration of existing trade-based employees with the newly recruited, primarily university educated graduates in the new site. Three waves of interview data were collected, in conjunction with the cognitive mapping of social grouping and photo elicitation portrayed the stories of different group of employees who either succeeded or failed at embracing their new professional identity. In contrast with the new recruits who constructed new identities as they join this organization, we identify and report on the number of enabling and disabling factors that influence the process of professional identity construction and reconstruction during gamma change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant food materials have a very high demand in the consumer market and therefore, improved food products and efficient processing techniques are concurrently being researched in food engineering. In this context, numerical modelling and simulation techniques have a very high potential to reveal fundamentals of the underlying mechanisms involved. However, numerical modelling of plant food materials during drying becomes quite challenging, mainly due to the complexity of the multiphase microstructure of the material, which undergoes excessive deformations during drying. In this regard, conventional grid-based modelling techniques have limited applicability due to their inflexible grid-based fundamental limitations. As a result, meshfree methods have recently been developed which offer a more adaptable approach to problem domains of this nature, due to their fundamental grid-free advantages. In this work, a recently developed meshfree based two-dimensional plant tissue model is used for a comparative study of microscale morphological changes of several food materials during drying. The model involves Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) to represent fluid and solid phases of the cellular structure. Simulation are conducted on apple, potato, carrot and grape tissues and the results are qualitatively and quantitatively compared and related with experimental findings obtained from the literature. The study revealed that cellular deformations are highly sensitive to cell dimensions, cell wall physical and mechanical properties, middle lamella properties and turgor pressure. In particular, the meshfree model is well capable of simulating critically dried tissues at lower moisture content and turgor pressure, which lead to cell wall wrinkling. The findings further highlighted the potential applicability of the meshfree approach to model large deformations of the plant tissue microstructure during drying, providing a distinct advantage over the state of the art grid-based approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Equation Presented). A series of star-shaped organic semiconductors have been synthesized from 1,3,6,8-tetrabromopyrene. The materials are soluble in common organic solvents allowing for solution processing of devices such as light-emitting diodes (OLEDs). One of the materials, 1,3,6,8-tetrakis(4- butoxyphenyl)pyrene, has been used as the active emitting layer in simple solution-processed OLEDs with deep blue emission (CIE = 0.15, 0.18) and maximum efficiencies and brightness levels of 2.56 cd/A and >5000 cd/m2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was a step forward in investigating the characteristics of recycled concrete aggregates to use as an unbound pavement material. The results present the guidelines for successfully application of recycled concrete aggregates in high traffic volume roads. Outcomes of the research create more economical and environmental benefits through reducing the depletion of natural resources and effectively manage the generated concrete waste before disposal as land fill.