259 resultados para Doxorubicin - Cardiac damage
Resumo:
Background The prevalence of type 2 diabetes is rising internationally. Patients with diabetes have a higher risk of cardiovascular events accounting for substantial premature morbidity and mortality, and health care expenditure. Given healthcare workforce limitations, there is a need to improve interventions that promote positive self-management behaviours that enable patients to manage their chronic conditions effectively, across different cultural contexts. Previous studies have evaluated the feasibility of including telephone and Short Message Service (SMS) follow up in chronic disease self-management programs, but only for single diseases or in one specific population. Therefore, the aim of this study is to evaluate the feasibility and short-term efficacy of incorporating telephone and text messaging to support the care of patients with diabetes and cardiac disease, in Australia and in Taiwan. Methods/design A randomised controlled trial design will be used to evaluate a self-management program for people with diabetes and cardiac disease that incorporates the use of simple remote-access communication technologies. A sample size of 180 participants from Australia and Taiwan will be recruited and randomised in a one-to-one ratio to receive either the intervention in addition to usual care (intervention) or usual care alone (control). The intervention will consist of in-hospital education as well as follow up utilising personal telephone calls and SMS reminders. Primary short term outcomes of interest include self-care behaviours and self-efficacy assessed at baseline and four weeks. Discussion If the results of this investigation substantiate the feasibility and efficacy of the telephone and SMS intervention for promoting self management among patients with diabetes and cardiac disease in Australia and Taiwan, it will support the external validity of the intervention. It is anticipated that empirical data from this investigation will provide valuable information to inform future international collaborations, while providing a platform for further enhancements of the program, which has potential to benefit patients internationally.
Resumo:
Aim To develop clinical practice guidelines for nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Background Numerous studies have reported that nurse-administered procedural sedation and analgesia is safe. However, the broad scope of existing guidelines for the administration and monitoring of patients who receive sedation during medical procedures without an anaesthetist presents means there is a lack of specific guidance regarding optimal nursing practices for the unique circumstances in which nurse-administered procedural sedation and analgesia is used in the cardiac catheterisation laboratory. Methods A sequential mixed methods design was utilised. Initial recommendations were produced from three studies conducted by the authors: an integrative review; a qualitative study; and a cross-sectional survey. The recommendations were revised in accordance with responses from a modified Delphi study. The first Delphi round was completed by nine senior cardiac catheterisation laboratory nurses. All but one of the draft recommendations met the pre-determined cut-off point for inclusion. There were a total of 59 responses to the second round. Consensus was reached on all recommendations. Implications for nursing The guidelines that were derived from the Delphi study offer twenty four recommendations within six domains of nursing practice: Pre-procedural assessment; Pre-procedural patient and family education; Pre-procedural patient comfort; Intra-procedural patient comfort; Intra-procedural patient assessment and monitoring; and Post-procedural patient assessment and monitoring. Conclusion These guidelines provide an important foundation towards the delivery of safe, consistent and evidence-based nursing care for the many patients who receive sedation in the cardiac catheterisation laboratory setting.
Resumo:
Purpose: To develop, using dacarbazine as a model, reliable techniques for measuring DNA damage and repair as pharmacodynamic endpoints for patients receiving chemotherapy. Methods: A group of 39 patients with malignant melanoma were treated with dacarbazine 1 g/m2 i.v. every 21 days. Tamoxifen 20 mg daily was commenced 24 h after the first infusion and continued until 3 weeks after the last cycle of chemotherapy. DNA strand breaks formed during dacarbazine-induced DNA damage and repair were measured in individual cells by the alkaline comet assay. DNA methyl adducts were quantified by measuring urinary 3-methyladenine (3-MeA) excretion using immunoaffinity ELISA. Venous blood was taken on cycles 1 and 2 for separation of peripheral blood lymphocytes (PBLs) for measurement of DNA strand breaks. Results: Wide interpatient variation in PBL DNA strand breaks occurred following chemotherapy, with a peak at 4 h (median 26.6 h, interquartile range 14.75- 40.5 h) and incomplete repair by 24 h. Similarly, there was a range of 3-MeA excretion with peak levels 4-10 h after chemotherapy (median 33 nmol/h, interquartile range 20.448.65 nmol/h). Peak 3-MeA excretion was positively correlated with DNA strand breaks at 4 h (Spearman's correlation coefficient, r = 0.39, P = 0.036) and 24 h (r = 0.46, P = 0.01). Drug-induced emesis correlated with PBL DNA strand breaks (Mann Whitney U-test, P = 0.03) but not with peak 3-MeA excretion. Conclusions: DNA damage and repair following cytotoxic chemotherapy can be measured in vivo by the alkaline comet assay and by urinary 3-MeA excretion in patients receiving chemotherapy.
Resumo:
Extrapulmonary small cell and small cell neuroendocrine tumors of unknown primary site are, in general, aggressive neoplasms with a short median survival. Like small cell lung cancer (SCLC), they often are responsive to chemotherapy and radiotherapy. Small cell lung cancer and well differentiated neuroendocrine carcinomas of the gastrointestinal tract and pancreas tend to express somatostatin receptors. These tumors may be localized in patients by scintigraphic imaging using radiolabeled somatostatin analogues. A patient with an anaplastic neuroendocrine small cell tumor arising on a background of multiple endocrine neoplasia type 1 syndrome is reported. The patient had a known large pancreatic gastrinoma and previously treated parathyroid adenopathy. At presentation, there was small cell cancer throughout the liver and skeleton. Imaging with a radiolabeled somatostatin analogue, 111In- pentetreotide (Mallinckrodt Medical B. V., Petten, Holland), revealed all sites of disease detected by routine biochemical and radiologic methods. After six cycles of chemotherapy with doxorubicin, cyclophosphamide, and etoposide, there was almost complete clearance of the metastatic disease. 111In-pentetreotide scintigraphy revealed uptake consistent with small areas of residual disease in the liver, the abdomen (in mesenteric lymph nodes), and posterior thorax (in a rib). The primary gastrinoma present before the onset of the anaplastic small cell cancer showed no evidence of response to the treatment. The patient remained well for 1 year and then relapsed with brain, lung, liver, and skeletal metastases. Despite an initial response to salvage radiotherapy and chemotherapy with carboplatin and dacarbazine, the patient died 6 months later.
Resumo:
Sedation scales have the potential to facilitate effective procedural sedation and analgesia in the cardiac catheterization laboratory (CCL). For this potential to become realised, a scale that is suitable for use in the CCL either needs to be identified or developed. To identify sedation scales, a review of Medline and CINHAL was conducted. One sedation scale for the CCL, the NASPE SED, and 15 Intensive Care Unit (ICU) scales met the inclusion and exclusion criteria. Analysis of the scale’s item structures and psychometric properties was then performed. None of these scales were deemed suitable for use in the CCL. As such, further research is required to develop a new scale. The new scale should consist of more than one item because it will be the most effective for tracking the patient’s response to medications. Specific tests required to conduct a rigorous evaluation of the new scale’s psychometric properties are outlined in this paper.
Resumo:
Introduction: Ondansetron is a 5-HT3 receptor antagonist commonly used as an anti-emetic to prevent the nausea and vomiting associated with anti-cancer drugs, cancer radiotherapy, or postoperatively. Recently, the US Food and Drug Administration (FDA) issued a warning for ondansetron due to a potential for prolongation of the QT interval of the electrocardiogram (ECG), a phenomenon that is associated with an increased risk of the potentially fatal arrhythmia torsade de pointes. Areas covered: We undertook a review of the cardiac safety of ondansetron. Our primary sources of information were PubMed (with downloading of full articles), and the internet. Expert opinion: The dose of ondansetron that the FDA has concerns about is 32 mg iv (or several doses that are equivalent to this), which is only used in preventing nausea and vomiting associated with cancer chemotherapy. This suggests that ondansetron may be safe in the lower doses used to prevent the nausea and vomiting in radiation treatment or postoperatively. However, as there is a report that a lower dose of ondansetron prolonged the QT interval in healthy volunteers, this needs to be clarified by the FDA. More research needs to be undertaken of the relationship between QT prolongation and torsades in order that the FDA can produce clear-cut evidence of pro-arrhythmic risk when introducing warnings for this.
Resumo:
Introduction: Domperidone is a dopamine D2-receptor antagonist developed as an antiemetic and prokinetic agents. Oral domperidone is not approved in the US, but is used in many countries to treat nausea and vomiting, gastroparesis, and as a galactogogue (to promote lactation). The US Food and Drug Administration (FDA) have issued a warning about the cardiac safety of domperidone. Areas covered: The authors undertook a review of the cardiac safety of oral domperidone. Expert opinion: The data from preclinical studies are unambiguous in identifying domperidone as able to produce marked hERG channel inhibition and action potential prolongation at clinically relevant concentrations. The compound’s propensity to augment instability of action potential duration and action potential triangulation are also indicative of proarrhythmic potential. Domperidone should not be administered to subjects with pre-existing QT prolongation/LQTS, subjects receiving drugs that inhibit CYP3A4, subjects with electrolyte abnormalities or with other risk factors for QT-prolongation. With these provisos, it is possible that domperidone may be used as a galactogogue without direct risk to healthy breast feeding women but more safety information should be sought in this situation. Also, more safety information is required regarding risk to breast feeding infants or before domperidone is routinely used in gastroparesis or gastroesphageal reflux in children.
Resumo:
Purpose A phase II study was designed to assess the efficacy and safety of Caelyx (liposomal doxorubicin) in patients with advanced or metastatic gastric cancer. Methods A total of 25 patients with gastric adenocarcinoma were treated with Caelyx 45 mg/m2 every 28 days as first-line therapy for advanced disease. Patients were treated until tumour progression or unacceptable toxicity. Results One patient was withdrawn from the study after experiencing a severe infusion reaction. Of the 24 evaluable patients, 1 had a partial response, 7 had stable disease and the others progressed. Side effects, in particular palmar-plantar erythrodysaesthesia and haematological toxicity, were minor. Conclusions We conclude that while this dose and schedule of Caelyx in this patient group is acceptable, further studies with this regimen cannot be recommended due to the lack of antitumour activity seen.
Resumo:
In particle-strengthened metallic alloys, fatigue damage incubates at inclusion particles near the surface or at the change of geometries. Micromechanical simulation of inclusions such that the fatigue damage incubation mechanisms can be categorized. As micro-plasticity gradient field around different inclusions is different, a novel concept for nonlocal evaluation of micro-plasticity intensity is introduced. The effects of void aspects ration and spatial distributions are quantified for fatigue incubation life in the high-cycle fatigue regime. At last, these effects are integrated based on the statistical facts of inclusions to predict the fatigue life of structural components.
Resumo:
Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.
Resumo:
Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.
Resumo:
The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.
Resumo:
Previous studies have shown that human topoisomerase I cleavage complexes form as a response to various DNA damages in vivo, the so called human topoisomerase I “damage response”. It was suggested that this damage response may play a role in DNA repair as well as in apoptosis, but only very few investigations have been done and the significance of the damage response still remains unclear. Here we demonstrate that human topoisomerase I cleavage complexes induced by high doses of UV irradiation are highly stable for up to 48 h. Furthermore, we show that human topoisomerase I cleavage complexes correlate with apoptosis. However, at low UV doses the cleavage complex level was very low and the complexes were repaired. Surprisingly, we found that high levels of stable cleavage complexes were not only found in UV-irradiated cells but also in untreated cells that underwent apoptosis. A possible role of human topoisomerase I in apoptosis is discussed.