180 resultados para Air pollution control industry.
Resumo:
The aim of this paper is to determine the suitability of solely stationary measurements for exposure assessment and management applications. For this purpose, quantified inhaled particle surface area (IPSA) doses using both stationary and personal particle exposure monitors were evaluated and compared.
Resumo:
The Air Pollution Model and Chemical Transport Model (TAPM-CTM) framework has been tested and applied originally in Sydney to quantify particle and gaseous concentration (Cope et al, 2014). However, the model performance had not been tested in the south-eastern Queensland region (SEQR), Australia.
Resumo:
The Australian food system significantly contributes to a range of key environmental issues including harmful greenhouse gas emissions, air pollution, soil desertification, biodiversity loss and water scarcity. At the same time, the Australian s food system is a key cause of public health nutrition issues that stem from the co-existence of over- and under-consumption of dietary energy and nutrients. Within these challenges lie synergies and opportunities because a diet that has a lower environmental impact generally aligns with good nutrition. Australian State and Federal initiatives to influence food consumption patterns focus on individual body weight and ‘soft law’ interventions. These regulatory approaches, by focusing on select symptoms of food system failures, are fragmented, reductionist and inefficient. In order to illustrate this point, this paper will explore Australian regulatory responses to diet-related illnesses. The analysis will support the argument that only when regulatory responses to diets become embedded within reform of the current food system will substantial improvements to human and planetary health be achieved.
Resumo:
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse health outcomes. Concentrations of urinary PAH metabolites (OH-PAHs) provide an integrated measure of human exposure to PAHs but measurement of urinary OH-PAHs has not been done in Australia and rarely in Vietnam, where air pollution is of concern. In this study, we assessed exposure to PAHs in 16 participants living in Brisbane, Australia and Hanoi, Vietnam, with 4 participants travelling between the two cities during the monitoring period. A total of 312 first morning urine samples were collected over 10 weeks and were analysed for nine OH-PAHs. Concentrations of the urinary OH-PAHs were 2–10 times higher in participants from Hanoi than those from Brisbane. For example, the median concentrations of 1-hydroxypyrene were 292 pg/mL in Hanoi, compared to 64 pg/mL in Brisbane. For participants travelling from Brisbane to Hanoi and back, differences in exposure to PAHs in these two cities resulted in corresponding changes of urinary OH-PAH concentrations, demonstrating that the more polluted environment in Hanoi was likely the source for higher PAH exposure there.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
Background Heatwaves have a significant impact on population health including both morbidity and mortality. In this study we examined the association between heatwaves and emergency hospital admissions (EHAs) for renal diseases in children (aged 0–14 years) in Brisbane, Australia. Methods Daily data on EHAs for renal diseases in children and exposure to temperature and air pollution were obtained for Brisbane city from January 1, 1996 to December 31, 2005. A time-stratified case-crossover design was used to compare the risks for renal diseases between heatwave and non-heatwave periods. Results There were 1565 EHAs for renal diseases in children during the study period. Heatwaves exhibited a significant impact on EHAs for renal diseases in children after adjusting for confounding factors (odds ratio: 3.6; 95% confidence interval: 1.4–9.5). The risk estimates differed with lags and the use of different heatwave definitions. Conclusions There was a significant increase in EHAs for renal diseases in children during heatwaves in Brisbane, a subtropical city where people are well accustomed to warm weather. This finding may have significant implications for pediatric renal care, particularly in subtropical and tropical regions.
Resumo:
To study the relation between temperature and mortality by estimating the temperature-related mortality in Beijing, Shanghai, and Guangzhou. METHODS: Data of daily mortality, weather and air pollution in the three cities were collected. A distributed lag nonlinear model was established and used in analyzing the effects of temperature on mortality. Current and future net temperature-related mortality was estimated. RESULTS: The association between temperature and mortality was J-shaped, with an increased death risk of both hot and cold temperature in these cities. The effects of cold temperature on health lasted longer than those of hot temperature. The projected temperature-related mortality increased with the decreased cold-related mortality. The mortality was higher in Guangzhou than in Beijing and Shanghai. CONCLUSION: The impact of temperature on health varies in the 3 cities of China, which may have implications for climate policy making in China.
Resumo:
Background Little evidence is available about the association between temperature and cerebrovascular mortality in China. This study aims to examine the effects of ambient temperature on cerebrovascular mortality in different climatic zones in China. Method We obtained daily data on weather conditions, air pollution and cerebrovascular deaths from five cities (Beijing, Tianjin, Shanghai, Wuhan, and Guangzhou) in China during 2004-2008. We examined city-specific associations between ambient temperature and the cerebrovascular mortality, while adjusting for season, long-term trends, day of the week, relative humidity and air pollution. We examined cold effects using a 1°C decrease in temperature below a city-specific threshold, and hot effects using a 1°C increase in temperature above a city-specific threshold. We used a meta-analysis to summarize the cold and hot effects across the five cities. Results Beijing and Tianjin (with low mean temperature) had lower thresholds than Shanghai, Wuhan and Guangzhou (with high mean temperature). In Beijing, Tianjin, Wuhan and Guangzhou cold effects were delayed, while in Shanghai there was no or short induction. Hot effects were acute in all five cities. The cold effects lasted longer than hot effects. The hot effects were followed by mortality displacement. The pooled relative risk associated with a 1°C decrease in temperature below thresholds (cold effect) was 1.037 (95% confidence interval (CI): 1.020, 1.053). The pooled relative risk associated with a 1°C increase in temperature above thresholds (hot effect) was 1.014 (95% CI: 0.979, 1.050). Conclusion Cold temperatures are significantly associated with cerebrovascular mortality in China, while hot effect is not significant. People in colder climate cities were sensitive to hot temperatures, while people in warmer climate cities were vulnerable to cold temperature.
Resumo:
Changes at work are often accompanied with the threat of, or actual, resource loss. Through an experiment, we investigated the detrimental effect of the threat of resource loss on adaptive task performance. Self-regulation (i.e., task focus and emotion control) was hypothesized to buffer the negative relationship between the threat of resource loss and adaptive task performance. Adaptation was conceptualized as relearning after a change in task execution rules. Threat of resource loss was manipulated for 100 participants undertaking an air traffic control task. Using discontinuous growth curve modeling, 2 kinds of adaptation—transition adaptation and reacquisition adaptation—were differentiated. The results showed that individuals who experienced the threat of resource loss had a stronger drop in performance (less transition adaptation) and a subsequent slower recovery (less reacquisition adaptation) compared with the control group who experienced no threat. Emotion control (but not task focus) moderated the relationship between the threat of resource loss and transition adaptation. In this respect, individuals who felt threatened but regulated their emotions performed better immediately after the task change (but not later on) compared with those individuals who felt threatened and did not regulate their emotions as well. However, later on, relearning (reacquisition adaptation) under the threat of resource loss was facilitated when individuals concentrated on the task at hand.
Resumo:
Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.
Resumo:
Airborne organic pollutants have significant impacts on health; however their sources, atmospheric characteristics and resulting human exposures are poorly understood. This research characterized chemical composition of atmospheric volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyls in representative number of primary schools in Brisbane Metropolitan Area, quantified their concentrations, assessed their toxicity and apportioned them to their sources. The findings expand scientific knowledge of these pollutants, and will contribute towards science based management of risks associated with pollution emissions and air quality in schools and other urban and indoor environments.
Resumo:
Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemical composition of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition (particles above 50 nm in vacuum aerodynamic diameter) and PNSD (particles within 9-414 nm in mobility diameter), respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two of the sites. The NPF events happened on relatively warmer days with lower condensation sink (CS). Temporal percent fractions of organics increased after the particles grew enough to have a significant contribution to particles volume, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. K-means cluster analysis was performed on f44 vs f43 data and it was found that they follow different patterns on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be potentially used as a tool for source apportionment of measured particles.
Resumo:
Traffic-related air pollution has been associated with a wide range of adverse health effects. One component of traffic emissions that has been receiving increasing attention is ultrafine particles(UFP, < 100 nm), which are of concern to human health due to their small diameters. Vehicles are the dominant source of UFP in urban environments. Small-scale variation in ultrafine particle number concentration (PNC) can be attributed to local changes in land use and road abundance. UFPs are also formed as a result of particle formation events. Modelling the spatial patterns in PNC is integral to understanding human UFP exposure and also provides insight into particle formation mechanisms that contribute to air pollution in urban environments. Land-use regression (LUR) is a technique that can use to improve the prediction of air pollution.