414 resultados para visual cultures
Resumo:
This paper presents an image based visual servoing system that is intended to be used for tracking and obtaining scientific observations of the HIFiRE vehicles. The primary aim of this tracking platform is to acquire and track the thermal signature emitted from the surface of the vehicle during the re-entry phase of the mission using an infra-red camera. The implemented visual servoing scheme uses a classical image based approach to identify and track the target using visual kinematic control. The paper utilizes simulation and experimental results to show the tracking performance of the system using visual feedback. Discussions on current implementation and control techniques to further improve the performance of the system are also explored.
Resumo:
It is known that the depth of focus (DOF) of the human eye can be affected by the higher order aberrations. We estimated the optimal combinations of primary and secondary Zernike spherical aberration to expand the DOF and evaluated their efficiency in real eyes using an adaptive optics system. The ratio between increased DOF and loss of visual acuity was used as the performance indicator. The results indicate that primary or secondary spherical aberration alone shows similar effectiveness in extending the DOF. However, combinations of primary and secondary spherical aberration with different signs provide better efficiency for expanding the DOF. This finding suggests that the optimal combinations of primary and secondary spherical aberration may be useful in the design of optical presbyopic corrections. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study investigates the influence of the built environment upon residents' sense of familiarity, concept of self and thus, their facilitation of place through the theory of "The Bondage of Imposed Visual Discourse". Simone de Beauvoir's theory "The Bondage of Feminine Elegance" provides the conceptual understanding of the visual discourse between the physicality of clothing and the wearer's personal identity. This fashion theory is transposed to explore the influence of the built environment's physicality upon aged care residents' personal identity. This paper presents findings from a study of professionals' opinions in reference to the built environment of permanent residential aged care for the 'oldest-old' of Australia. The researcher conducted qualitative interviews with four participants: an architect, occupational therapist, nursing home facility manager and an aged care lobbyist in the South-East Queensland. This study is structured towards proposing "place-focused" qualitative design principles to encourage residents' sense of place through the built environment. These proposed principles are addressed with reference to existing Standards and Principles outlined by the Australian Government.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. This paper proposes two inspection modules for an automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localisation and segmentation. The “back-end” inspection involves the classification of solder joints using the Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. The Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. This system could contribute to the development of automated non-contact, non-destructive and low cost solder joint quality inspection systems.
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Healthy and sustainable food is gaining more attention from consumers, industry, and researchers. Yet many approaches to date are limited to information dissemination, advertisement or education. We have embarked on a three year collaborative research project (2011 – 2013) to explore urban food practices – eating, cooking, growing food – to support the well-being of people and the environment. Our overall goal is to employ a user-centred interaction design research approach to inform the development of entertaining, real-time, mobile and networked applications, engaging playful feedback to build motivation. Our aspiration for this study is to deliver usable and useful mobile and situated interaction prototypes that employ individual and group strategies to foster food cultures that provide new pathways to produce, share and enjoy food that is green, healthy, and fun.
Resumo:
Purpose: Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment among older adults. This study explored the relationship between AMD, falls risk and other injuries and identified visual risk factors for these adverse events. Methods: Participants included 76 community-dwelling individuals with a range of severity of AMD (mean age, 77.0±6.9 years). Baseline assessment included binocular visual acuity, contrast sensitivity and merged visual fields. Participants completed monthly falls and injury diaries for one year following the baseline assessment. Results: Overall, 74% of participants reported having either a fall, injurious fall or other injury. Fifty-four percent of participants reported a fall and 30% reported more than one fall; of the 102 falls reported, 63% resulted in an injury. Most occurred outdoors (52%), between late morning and late afternoon (61%) and when navigating on level ground (62%). The most common non-fall injuries were lacerations (36%) and collisions with an object (35%). Reduced contrast sensitivity and visual acuity were associated with increased fall rate, after controlling for age, gender, cognitive function, cataract severity and self-reported physical function. Reduced contrast sensitivity was the only significant predictor of falls and other injuries. Conclusion: Among older adults with AMD, increased visual impairment was significantly associated with an increased incidence of falls and other injuries. Reduced contrast sensitivity was significantly associated with increased rates of falls, injurious falls and injuries, while reduced visual acuity was only associated with increased falls risk. These findings have important implications for the assessment of visually impaired older adults.
Resumo:
Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.
Resumo:
The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.
Resumo:
Micro aerial vehicles (MAVs) are a rapidly growing area of research and development in robotics. For autonomous robot operations, localization has typically been calculated using GPS, external camera arrays, or onboard range or vision sensing. In cluttered indoor or outdoor environments, onboard sensing is the only viable option. In this paper we present an appearance-based approach to visual SLAM on a flying MAV using only low quality vision. Our approach consists of a visual place recognition algorithm that operates on 1000 pixel images, a lightweight visual odometry algorithm, and a visual expectation algorithm that improves the recall of place sequences and the precision with which they are recalled as the robot flies along a similar path. Using data gathered from outdoor datasets, we show that the system is able to perform visual recognition with low quality, intermittent visual sensory data. By combining the visual algorithms with the RatSLAM system, we also demonstrate how the algorithms enable successful SLAM.