179 resultados para soil CO2 efflux
Resumo:
Magnetic properties of soils have been highlighted as a primary detrimental environmental effect on the performance of geophysical systems for detection of unexploded ordnance (UXO) and mine targets. A recent workshop at Cranfield University, U.K., aimed to identify knowledge gaps related to soil magnetism. Eight invited speakers from multidisciplinary areas provided briefings on state‐of‐the‐art research linked to soil magnetism and geophysical sensing. Contributions from other participants provided additional insights from a range of disciplines through case studies and applications. The workshop included break‐out sessions to identify current gaps in knowledge and to determine priority areas for investment in research to further developments in UXO and mine detection in magnetic soil environments. Key recommendations for future research investments have been grouped in categories including soils, theory and modeling, instrumentation, and communication.
Resumo:
Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.
Resumo:
This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.
Resumo:
One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.
Resumo:
The generation of solar thermal power is dependent upon the amount of sunlight exposure,as influenced by the day-night cycle and seasonal variations. In this paper, robust optimisation is applied to the design of a power block and turbine, which is generating 30 MWe from a concentrated solar resource of 560oC. The robust approach is important to attain a high average performance (minimum efficiency change) over the expected operating ranges of temperature, speed and mass flow. The final objective function combines the turbine performance and efficiency weighted by the off-design performance. The resulting robust optimisation methodology as presented in the paper gives further information that greatly aids in the design of non-classical power blocks through considering off-design conditions and resultant performance.
Resumo:
Searching for efficient solid sorbents for CO2 adsorption and separation is important for developing emergent carbon reduction and natural gas purification technology. This work, for the first time, has investigated the adsorption of CO2 on newly experimentally realized cage-like B40 fullerene (Zhai et al., 2014) based on density functional theory calculations. We find that the adsorption of CO2 on B40 fullerene involves a relatively large energy barrier (1.21 eV), however this can be greatly decreased to 0.35 eV by introducing an extra electron. A practical way to realize negatively charged B40 fullerene is then proposed by encapsulating a Li atom into the B40 fullerene (Li@B40). Li@B40 is found to be highly stable and can significantly enhance both the thermodynamics and kinetics of CO2 adsorption, while the adsorptions of N2, CH4 and H2 on the Li@B40 fullerene remain weak in comparison. Since B40 fullerene has been successfully synthesized in a most recent experiment, our results highlight a new promising material for CO2 capture and separation for future experimental validation.
Resumo:
Management of sodic soils under irrigation often requires application of chemical ameliorants to improve permeability combined with leaching of excess salts. Modeling irrigation, soil treatments, and leaching in these sodic soils requires a model that can adequately represent the physical and chemical changes in the soil associated with the amelioration process. While there are a number of models that simulate reactive solute transport, UNSATCHEM and HYDRUS-1D are currently the only models that also include an ability to simulate the impacts of soil chemistry on hydraulic conductivity. Previous researchers have successfully applied these models to simulate amelioration experiments on a sodic loam soil. To further gauge their applicability, we extended the previous work by comparing HYDRUS simulations of sodic soil amelioration with the results from recently published laboratory experiments on a more reactive, repacked sodic clay soil. The general trends observed in the laboratory experiments were able to be simulated using HYDRUS. Differences between measured and simulated results were attributed to the limited flexibility of the function that represents chemistry-dependent hydraulic conductivity in HYDRUS. While improvements in the function could be made, the present work indicates that HYDRUS-UNSATCHEM captures the key changes in soil hydraulic properties that occur during sodic clay soil amelioration and thus extends the findings of previous researchers studying sodic loams.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.
Resumo:
The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro-ecosystems to the atmosphere. Although denitrification has received great interest by biogeochemists in the last decades, the magnitude of N2lossesand related N2:N2O ratios from soils still are largely unknown due to methodical constraints. We present a novel 15N tracer approach, based on a previous developed tracer method to study denitrification in pure bacterial cultures which was modified for the use on soil incubations in a completely automated laboratory set up. The method uses a background air in the incubation vessels that is replaced with a helium-oxygen gas mixture with a 50-fold reduced N2 background (2 % v/v). This method allows for a direct and sensitive quantification of the N2 and N2O emissions from the soil with isotope-ratio mass spectrometry after 15N labelling of denitrification N substrates and minimises the sensitivity to the intrusion of atmospheric N2 at the same time. The incubation set up was used to determine the influence of different soil moisture levels on N2 and N2O emissions from a sub-tropical pasture soil in Queensland/Australia. The soil was labelled with an equivalent of 50 μg-N per gram dry soil by broadcast application of KNO3solution (4 at.% 15N) and incubated for 3 days at 80% and 100% water filled pore space (WFPS), respectively. The headspace of the incubation vessel was sampled automatically over 12hrs each day and 3 samples (0, 6, and 12 hrs after incubation start) of headspace gas analysed for N2 and N2O with an isotope-ratio mass spectrometer (DELTA V Plus, Thermo Fisher Scientific, Bremen, Germany(. In addition, the soil was analysed for 15N NO3- and NH4+ using the 15N diffusion method, which enabled us to obtain a complete N balance. The method proved to be highly sensitive for N2 and N2O emissions detecting N2O emissions ranging from 20 to 627 μN kg-1soil-1hr-1and N2 emissions ranging from 4.2 to 43 μN kg-1soil-1hr-1for the different treatments. The main end-product of denitrification was N2O for both water contents with N2 accounting for 9% and 13% of the total denitrification losses at 80% and 100%WFPS, respectively. Between 95-100% of the added 15N fertiliser could be recovered. Gross nitrification over the 3 days amounted to 8.6 μN g-1 soil-1 and 4.7 μN g-1 soil-1, denitrification to 4.1 μN g-1 soil-1 and 11.8 μN g-1 soil-1at 80% and 100%WFPS, respectively. The results confirm that the tested method allows for a direct and highly sensitive detection of N2 and N2O fluxes from soils and hence offers a sensitive tool to study denitrification and N turnover in terrestrial agro-ecosystems.
Resumo:
Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.
Resumo:
In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.