441 resultados para rotational bands
Resumo:
The Raman spectrum of tyrolite, CaCu5(AsO4)2(CO3)(OH) 4.6H2O, from Brixlegg, Tyrol, Austria, is reported. Comparison with copper hydroxy-arsenate and basic carbonates was used to achieve assignments of the observed bands. The AsO43- group is characterized by two υ4 modes around 433 and 480 cm-1 plus a broad band around 840 cm-1 as the υ overlapping with the υ. The υ3 mode is observed as a single band around 355 cm -1. The CO32- υ1 mode is observed around 1035 and 1088 cm-1, although this assignment is difficult because of the in-plane OH bending vibrations at similar frequencies. Two υ4 modes are assigned to the 717 and 755 cm-1 bands. The υ3 mode is present as three bands at 1431, 1463, and 1498 cm-1. A large split caused by bridging carbonates may explain the band at 1370 cm -1. The H2O bending region shows two bands at 1635 and 1667 cm-1 together with stretching modes around 3204 and 3303 cm-1, the first associated with adsorbed H2O, while the second indicates more strongly bonded H2O. Three bands around 3534, 3438, and 3379 cm -1 are assigned to OH stretching modes of the OH groups in the crystal structure. The 202, 262, 301, 524, and 534 cm-1 bands are assigned to Cu-OH bending and stretching modes, whereas the bands around 179, 202, and 217 cm-1 are ascribed to O-(Ca, Cu)-O(H) with the O(H) at much greater distance from the cation. The bands around 503, 570, and 598 cm-1 are ascribed to the Cu-O stretching modes.
Resumo:
The molecular structure of the mineral archerite ((K,NH4)H2PO4) has been determined and compared with that of biphosphammite ((NH4,K)H2PO4). Raman spectroscopy and infrared spectroscopy has been used to characterise these ‘cave’ minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. The Raman band at 981 cm-1 is assigned to the HOP stretching vibration. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.
Resumo:
The mineral woodhouseite CaAl3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites, and has been characterised by Raman spectroscopy, complimented with infrared spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of woodhouseite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated.
Resumo:
The objective of this research is to determine the molecular structure of the mineral hinsdalite using vibrational spectroscopy. The mineral hinsdalite (Pb,Sr)Al3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites. The mineral is interesting because it contains two oxyanions, phosphate and sulphate, which is unusual. The formation of hinsdalite offers a mechanism for the removal of phosphate from the environment. The mineral has been characterised by Raman spectroscopy and infrared spectroscopy. The spectra are then related to the molecular structure of the mineral. Bands at various wavenumbers are assigned to the different vibrational modes of hinsdalite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. The Raman spectrum is characterised by an intense sharp band at 982 cm-1 with a component band at 997 cm-1 assigned to the ν1 (PO4)3- symmetric stretching modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Hinsdalite is characterised by disordered phosphate/sulphate tetrahedra and non-equivalent phosphate units are observed in the vibrational spectrum of hinsdalite.
Resumo:
Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.
Resumo:
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ.
Resumo:
The mineral crandallite CaAl3(PO4)2(OH)5•(H2O) has been identified in deposits found in the Jenolan Caves, New South Wales, Australia by using a combination of X-ray diffraction and Raman spectroscopic techniques. A comparison is made between the vibrational spectra of crandallite found in the Jenolan Caves and a standard crandallite. Raman and infrared bands are assigned to PO43- and HPO42- stretching and bending modes. The predominant features are the internal vibrations of the PO43 and HPO42- groups. A mechanism for the formation of crandallite is presented and the conditions for the formation are elucidated.
Resumo:
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Cu2+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in a different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.
Resumo:
Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)•2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm-1 and the less intense band at 866 cm-1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm-1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm-1 and 514, 541 and 570 cm-1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm-1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm-1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.
Resumo:
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm-1 assigned to the ν1 (SO4)2- symmetric stretching mode and Raman bands at 1077 and 1097 cm-1 may be attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm-1 are assigned to carbonate CO32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm-1 are attributed to the ν3 (AsO4)3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm-1 and is assigned to the ν1 (AsO4)3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.
Resumo:
We synthesized vertically aligned nail-shaped ZnO nanocrystal arrays on silicon substrates via a combination of a carbothermal reduction method and textured ZnO seeding layers that were precoated on silicon substrates by thermally decomposing zinc acetate, and studied their optical properties using cathodoluminescence (CL) and photoluminescence techniques. The ZnO nanonails show a sharp band-gap edge UV emission and a defect-related broad green emission. Monochromatic CL images of an individual ZnO nanonail show variations in spatial distributions of respective CL bands that had different origins. We attribute the spatial variation of CL images to an uneven distribution of luminescent defects and/or a structure-related light out-coupling from hexagonal ZnO nanostructures. The most distinct CL feature from the hexagonal head of an individual ZnO nanonail was the occurrence of a series of distinct resonant peaks within the visible wavelength range. It appeared that the head of a nanonail played the role of a hexagonal cavity so that polarizationdependent whispering gallery modes were stimulated by electron beam excitation.
Resumo:
Sarmientite is an environmental mineral; its formation in soils enables the entrapment and immobilisation of arsenic. The mineral sarmientite is often amorphous making the application of X-ray diffraction difficult. Vibrational spectroscopy has been applied to the study of sarmientite. Bands are attributed to the vibrational units of arsenate, sulphate, hydroxyl and water. Raman bands at 794, 814 and 831 cm−1 are assigned to the ν3 (AsO4)3− antisymmetric stretching modes and the ν1 symmetric stretching mode is observed at 891 cm−1. Raman bands at 1003 and 1106 cm−1 are attributed to vibrations. The Raman band at 484 cm−1 is assigned to the triply degenerate (AsO4)3− bending vibration. The high intensity Raman band observed at 355 cm−1 (both lower and upper) is considered to be due to the (AsO4)3−ν2 bending vibration. Bands attributed to water and OH stretching vibrations are observed.
Resumo:
Acute exercise has been shown to exhibit different effects on human sensorimotor behavior; however, the causes and mechanisms of the responses are often not clear. The primary aim of the present study was to determine the effects of incremental running until exhaustion on sensorimotor performance and adaptation in a tracking task. Subjects were randomly assigned to a running group (RG), a tracking group (TG), or a running followed by tracking group (RTG), with 10 subjects assigned to each group. Treadmill running velocity was initially set at 2.0 m s− 1, increasing by 0.5 m s− 1 every 5 min until exhaustion. Tracking consisted of 35 episodes (each 40 s) where the subjects' task was to track a visual target on a computer screen while the visual feedback was veridical (performance) or left-right reversed (adaptation). Resting electroencephalographic (EEG) activity was recorded before and after each experimental condition (running, tracking, rest). Tracking performance and the final amount of adaptation did not differ between groups. However, task adaptation was significantly faster in RTG compared to TG. In addition, increased alpha and beta power were observed following tracking in TG but not RTG although exhaustive running failed to induce significant changes in these frequency bands. Our results suggest that exhaustive running can facilitate adaptation processes in a manual tracking task. Attenuated cortical activation following tracking in the exercise condition was interpreted to indicate cortical efficiency and exercise-induced facilitation of selective central processes during actual task demands.
Resumo:
Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.