558 resultados para real-world
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
A novel application of the popular web instruction architecture Blackboard Academic Suite® is described. The method was applied to a large number of students to assess quantitatively the accuracy of each student’s laboratory skills. The method provided immediate feedback to students on their personal skill level, replaced labour-intensive scrutiny of laboratory skills by teaching staff and identified immediately those students requiring further individual assistance in mastering the skill under evaluation. The method can be used for both formative and summative assessment. When used formatively, the assessment can be repeated by the student without penalty until the skill is mastered. When used for summative assessment, the method can save the teacher much time and effort in assessing laboratory skills of vital importance to students in the real world.
Resumo:
For a mobile robot to operate autonomously in real-world environments, it must have an effective control system and a navigation system capable of providing robust localization, path planning and path execution. In this paper we describe the work investigating synergies between mapping and control systems. We have integrated development of a control system for navigating mobile robots and a robot SLAM system. The control system is hybrid in nature and tightly coupled with the SLAM system; it uses a combination of high and low level deliberative and reactive control processes to perform obstacle avoidance, exploration, global navigation and recharging, and draws upon the map learning and localization capabilities of the SLAM system. The effectiveness of this hybrid, multi-level approach was evaluated in the context of a delivery robot scenario. Over a period of two weeks the robot performed 1143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), travelled a total distance of more than 40km, and recharged autonomously a total of 23 times. In this paper we describe the combined control and SLAM system and discuss insights gained from its successful application in a real-world context.
Resumo:
Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.
Resumo:
Staff and students of the Surveying and Spatial Sciences discipline at QUT have worked collaboratively with the Institute of Sustainable Resources in the creation and development of spatial information layers and infrastructure to support multi-disciplinary research efforts at the Samford Ecological Research Facility (SERF). The SERF property is unique in that it provides staff and students with a semi-rural controlled research base for multiple users. This paper aims to describe the development of a number of spatial information layers and network of survey monuments that assist and support research infrastructure at SERF. A brief historical background about the facility is presented along with descriptions of the surveying and mapping activities undertaken. These broad ranging activities include introducing monument infrastructure and a geodetic control network; surveying activities for aerial photography ground-control targets including precise levelling with barcode instruments; development of an ortho-rectified image spatial information layer; Real-Time-Kinematic Global Positioning Systems (RTK-GPS) surveying for constructing 100metre confluence points/monuments to support science-based disciplines to undertake environmental research transects and long-term ecological sampling; and real-world learning initiative to assist with water engineering projects and student experiential learning. The spatial information layers and physical infrastructure have been adopted by two specific yet diverse user groups with an interest in the long-term research focus of SERF.
Resumo:
Introduction: Excessive exposure to ultraviolet (UV) radiation from sunlight is a causative factor in the development of skin damage and skin cancer. Little research has been undertaken into assessing the sun exposure linking to skin damage inside buildings or behind window glass. This project directly addressed this issue by aiming to assess the role that UV exposure has on skin damage for indoor workers and drivers. Methods: Measurements of personal UV exposure using UV sensitive polymer dosimeters were undertaken of 41 indoor workers and 3 professional drivers. Physical measurements of skin characteristics including skin pigmentation and UV induced skin photoaging were also determined. In addition, demographic information along with phenotypic characteristics, sun exposure and sun protection practice history, and history of skin damage were assessed through a questionnaire. Results: Indoor workers typically received low doses of UV radiation. However, one driver received a high dose (13J/cm2 UVA and 4.99 MED UVB on the arm). Age and years residing in Australia had a positive correlation with UV induced skin pigmentation. The number of major sunburns before 18 years was a risk factor for skin damage in adults. Those participants with fair skin, non-black hair and blue/green /blue-grey eye were more likely to have skin damage related to sun exposure. Conclusions: A person’s age, years residing in Australia, numbers of major sunburn, skin colour, hair colour and eye colour are important factors associated with the development of sun-related skin damage in workers. ‘Real World’ implications: 1. The number of major sunburns before 18 years was a risk factor for skin damage in adults. This clearly confirms the importance of early prevention. To protect the skin from extensive sun exposure for your generation should have significance for further prevention of skin damage. 2. It is unsurprising that age and years residing in Australia were associated with skin damage related UV radiation. Therefore, the general public should reinforce their sun protective measures and check skin regularly. 3. Drivers should take sun protective measures during their working hours between sunrise and sunset.
Resumo:
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.
Resumo:
Real-World Survey practical at Coombabah with GPS surveying; BEE student prizes Evening; Engaging Students in real-world learning at SERF.
Resumo:
Within a surveillance video, occlusions are commonplace, and accurately resolving these occlusions is key when seeking to accurately track objects. The challenge of accurately segmenting objects is further complicated by the fact that within many real-world surveillance environments, the objects appear very similar. For example, footage of pedestrians in a city environment will consist of many people wearing dark suits. In this paper, we propose a novel technique to segment groups and resolve occlusions using optical flow discontinuities. We demonstrate that the ratio of continuous to discontinuous pixels within a region can be used to locate the overlapping edges, and incorporate this into an object tracking framework. Results on a portion of the ETISEO database show that the proposed algorithm results in improved tracking performance overall, and improved tracking within occlusions.
Resumo:
Through a case study analysis, this paper discusses the essential elements of successful university-industry partnerships in the context of the integration of the scholarships of teaching, research and application. This scholarly integration is advocated as the modern paradigm of real-world laboratory activity termed the “living laboratory”. The paper further examines the application of the concepts of experimentation, engagement and regeneration as critical measures for evaluating successful university-industry partnerships. University-industry partnerships play an increasingly important role in the current climate of universities being held increasingly accountable for the benefits of their scholarship to be transferred to the wider community and to demonstrate measurable impacts.
Resumo:
This study investigated preservice teachers’ perceptions for teaching and sustaining gifted and talented students while developing, modifying and implementing activities to cater for the diverse learner. Participants were surveyed at the end of a gifted and talented education program on their perceptions to differentiate the curriculum for meeting the needs of the student (n=22). SPSS data analysis with the five-part Likert scale indicated these preservice teachers agreed or strongly agreed they had developed skills in curriculum planning (91%) with well-designed activities (96%), and lesson preparation skills (96%). They also claimed they were enthusiastic for teaching (91%) and understanding of school practices and policies (96%). However, 46% agreed they had knowledge of syllabus documents with 50% claiming an ability to provide written feedback on student’s learning. Furthermore, nearly two-thirds suggested they had educational language from the syllabus and effective student management strategies. Preservice teachers require more direction on how to cater for diversity and begin creating sustainable societies by building knowledge from direct GAT experiences. Designing diagnostic surveys associated with university coursework can be used to determine further development for specific preservice teacher development in GAT education. Preservice teachers need to create opportunities for students to realise their potential by involving cognitive challenges through a differentiated curriculum. Differentiation requires modification of four primary areas of curriculum development (Maker, 1975) content (what we teach), process (how we teach), product (what we expect the students to do or show) and learning environment (where we teach/our class culture). Ashman and Elkins (2009) and Glasson (2008) emphasise the need for preservice teachers, teachers and other professionals to be able to identify what gifted and talented (GAT) students know and how they learn in relation to effective teaching. Glasson (2008) recommends that educators keep up to date with practices in pedagogy, support, monitoring and profiling of GAT students to create an environment conducive to achieving. Oral feedback is one method to communicate to learners about their progress but has advantages and disadvantages for some students. Oral feedback provides immediate information to the student on progress and performance (Ashman & Elkins, 2009). However, preservice teachers must have clear understandings of key concepts to assist the GAT student. Implementing teaching strategies to engage innovate and extend students is valuable to the preservice teacher in focusing on GAT student learning in the classroom (Killen, 2007). Practical teaching strategies (Harris & Hemming, 2008; Tomlinson et al., 1994) facilitate diverse ways for assisting GAT students to achieve learning outcomes. Such strategies include activities to enhance creativity, co-operative learning and problem-solving activities (Chessman, 2005; NSW Department of Education and Training, 2004; Taylor & Milton, 2006) for GAT students to develop a sense of identity, belonging and self esteem towards becoming an autonomous learner. Preservice teachers need to understand that GAT students learn in a different way and therefore should be assessed differently. Assessment can be through diverse options to demonstrate the student’s competence, demonstrate their understanding of the material in a way that highlights their natural abilities (Glasson, 2008; Mack, 2008). Preservice teachers often are unprepared to assess students understanding but this may be overcome with teacher education training promoting effective communication and collaboration in the classroom, including the provision of a variety of assessment strategies to improve teaching and learning (Callahan et al., 2003; Tomlinson et al., 1994). It is also critical that preservice teachers have enthusiasm for teaching to demonstrate inclusion, involvement and the excitement to communicate to GAT students in the learning process (Baum, 2002). Evaluating and reflecting on teaching practices must be part of a preservice teacher’s repertoire for GAT education. Evaluating teaching practices can assist to further enhance student learning (Mayer, 2008). Evaluation gauges the success or otherwise of specific activities and teaching in general (Mayer, 2008), and ensures that preservice teachers and teachers are well prepared and maintain their commitment to their students and the community. Long and Harris (1999) advocate that reflective practices assist teachers in creating improvements in educational practices. Reflective practices help preservice teachers and teachers to improve their ability to pursue improved learning outcomes and professional growth (Long & Harris, 1999). Context This study is set at a small regional campus of a large university in Queensland. As a way to address departmental policies and the need to prepare preservice teachers for engaging a diverse range of learners (see Queensland College of Teachers, Professional Standards for Teachers, 2006), preservice teachers at this campus completed four elective units within their Bachelor of Education (primary) degree. The electives include: 1. Middle years students and schools 2. Teaching strategies for engaging learners 3. Teaching students with learning difficulties, and 4. Middle-years curriculum, pedagogy and assessment. In the university-based component of this unit, preservice teachers engaged in learning about middle years students and schools, and gained knowledge of government policies pertaining to GAT students. Further explored within in this unit was the importance of: collaboration between teachers, parents/carers and school personnel in supporting middle years GAT students; incorporating challenging learning experiences that promoted higher order thinking and problem solving skills; real world learning experiences for students and; the alignment and design of curriculum, pedagogy and assessment that is relevant to the students development, interests and needs. The participants were third-year Bachelor of Education (primary) preservice teachers who were completing an elective unit as part of the middle years of schooling learning with a focus on GAT students. They were assigned one student from a local school. In the six subsequent ninety minute weekly lessons, the preservice teachers were responsible for designing learning activities that would engage and extend the GAT students. Furthermore, preservice teachers made decisions about suitable pedagogical approaches and designed the assessment task to align with the curriculum and the developmental needs of their middle years GAT student. This research aims to describe preservice teachers’ perceptions of their education for teaching gifted and talented students.
Resumo:
After Kevin Rudd’s Apology to Indigenous Peoples after his election as Prime Minister in 2008 the climate was hopeful with many Aboriginal and Torres Strait Islander women (and non-Indigenous women, too) breathing a sigh of relief that the disastrous effects of White Australia’s government policies had at last been symbolically, publicly and officially acknowledged. There was also, though, skepticism about the ‘real’ change this Apology might have for Indigenous Australians. Many of us wondered if the Apology would make any difference at all in the ‘real’ world, where the gaps between non-Indigenous and Indigenous Australians is still so glaringly apparent in areas such as health, education, housing and employment.
Resumo:
The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.
Resumo:
The professional doctorate is a degree that is specifically designed for professionals investigating real world problems and relevant issues for a profession, industry and/ or the community. The study on which this paper is based sought to track the scholarly skill development of a cohort of professional doctoral students who commenced their course in January 2008 at an Australian University. Via an initial survey and two focus groups held six months apart, the study aimed to determine if there had been any qualitative shifts in students’ understandings, expectations and perceptions regarding this developing knowledge and skills. Three key findings has emerged from this study were: (i) the appropriateness of using a blended learning approach for this doctoral cohort; (ii) the challenges of using wikis as an online technology of creating communities of practice: and (iii) that the transition from student to scholar is a process that is unlikely to be achieved in a short time frame.
Resumo:
There is a current requirement for universities to prepare graduates who are skilled in practical as well as theoretical knowledge of the workplace. It is argued in this paper that assessment, as integral to the teaching/learning process, should also relate to the real world context of the workplace, in that students are able to transform, use and apply the knowledge that they learn into these contexts. While assessment authentic for students in a university setting is often a difficult task for lecturers. This paper discusses three different learning contexts that involved different assessment experiences linked in some way to real world learning and application of the theory. The results of the trial indicated that as contexts became close to a real world experience, the sustainability of the assessment became more problematic. While acknowledging the difficulty of these practices, it is suggested that there is a need for a continuous cycle of evaluation amid some creative and innovative approaches to assessment practice.