179 resultados para linked open data
Resumo:
National pride is both an important and understudied topic with respect to economic behaviour, hence this thesis investigates whether: 1) there is a "light" side of national pride through increased compliance, and a "dark" side linked to exclusion; 2) successful priming of national pride is linked to increased tax compliance; and 3) East German post-reunification outmigration is related to loyalty. The project comprises three related empirical studies, analysing evidence from a large, aggregated, international survey dataset; a tax compliance laboratory experiment combining psychological priming with measurement of heart rate variability; and data collected after the fall of the Berlin Wall (a situation approximating a natural experiment).
Resumo:
This study presents a comprehensive mathematical model for open pit mine block sequencing problem which considers technical aspects of real-life mine operations. As the open pit block sequencing problem is an NP-hard, state-of-the-art heuristics algorithms, including constructive heuristic, local search, simulated annealing, and tabu search are developed and coded using MATLAB programming language. Computational experiments show that the proposed algorithms are satisfactory to solve industrial-scale instances. Numerical investigation and sensitivity analysis based on real-world data are also conducted to provide insightful and quantitative recommendations for mine schedulers and planners.
Resumo:
Background: Appetitive traits and food preferences are key determinants of children’s eating patterns but it is unclear how these behaviours relate to one another. This study explores relationships between appetitive traits and preferences for fruits and vegetables, and energy dense, nutrient poor (noncore) foods in two distinct samples of Australian and British preschool children. Methods: This study reports secondary analyses of data from families participating in the British GEMINI cohort study (n=1044) and the control arm of the Australian NOURISH RCT (n=167). Food preferences were assessed by parent-completed questionnaire when children were aged 3-4 years and grouped into three categories; vegetables, fruits and noncore foods. Appetitive traits; enjoyment of food, food responsiveness, satiety responsiveness, slowness in eating, and food fussiness were measured using the Children’s Eating Behaviour Questionnaire when children were 16 months (GEMINI) or 3-4 years (NOURISH). Relationships between appetitive traits and food preferences were explored using adjusted linear regression analyses that controlled for demographic and anthropometric covariates. Results: Vegetable liking was positively associated with enjoyment of food (GEMINI; β=0.20 ± 0.03, p<0.001, NOURISH; β=0.43 ± 0.07, p<0.001) and negatively related to satiety responsiveness (GEMINI; β=-0.19 ± 0.03, p<0.001, NOURISH; β=-0.34 ± 0.08, p<0.001), slowness in eating (GEMINI; β=-0.10 ± 0.03, p=0.002, NOURISH; β=-0.30 ± 0.08, p<0.001) and food fussiness (GEMINI; β=-0.30 ± 0.03, p<0.001, NOURISH; β=-0.60 ± 0.06, p<0.001). Fruit liking was positively associated with enjoyment of food (GEMINI; β=0.18 ± 0.03, p<0.001, NOURISH; β=0.36 ± 0.08, p<0.001), and negatively associated with satiety responsiveness (GEMINI; β=-0.13 ± 0.03, p<0.001, NOURISH; β=-0.24 ± 0.08, p=0.003), food fussiness (GEMINI; β=-0.26 ± 0.03, p<0.001, NOURISH; β=-0.51 ± 0.07, p<0.001) and slowness in eating (GEMINI only; β=-0.09 ± 0.03, p=0.005). Food responsiveness was unrelated to liking for fruits or vegetables in either sample but was positively associated with noncore food preference (GEMINI; β=0.10 ± 0.03, p=0.001, NOURISH; β=0.21 ± 0.08, p=0.010). Conclusion: Appetitive traits linked with lower obesity risk were related to lower liking for fruits and vegetables, while food responsiveness, a trait linked with greater risk of overweight, was uniquely associated with higher liking for noncore foods.
Resumo:
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. © 2013 Mechelli et al.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.
Resumo:
In this paper we explore how small and medium-sized enterprises (SMEs) engage in external knowledge sourcing, a form of inbound open innovation. We draw upon a sample of 1,411 SMEs and empirically conceptualize a typology of strategic types of external knowledge sourcing, namely minimal, supply-chain, technology-oriented, application-oriented, and full-scope sourcing. Each strategy reflects the nature of external interactions and is linked to a distinct mixture of four internal practices for managing innovation. Both full-scope and application-oriented sourcing offer performance benefits and are associated with a stronger focus on managing innovation. However, they differ in their managerial focus on strategic and operational aspects.
Resumo:
Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future
Resumo:
Background Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. Methods We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Results Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Conclusions Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
Resumo:
The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers.
Resumo:
Background This study investigated the prevalence and socio-cultural correlates of postnatal mood disturbance amongst women 18–45 years old in Central Vietnam. Son preference and traditional confinement practices were explored as well as factors such as poverty, parity, family and intimate partner relationships and infant health. Methods A cross-sectional study was conducted in twelve randomly selected Commune Health Centres from urban and rural districts of Thua Thien Hue Province, Vietnam. Mother-infant dyads one to six months postpartum were invited to participate. Questionnaires from 431 mothers (urban n = 216; rural n = 215) assessed demographic and family characteristics, traditional confinement practices, son preference, infant health and social capital. The Edinburgh Postnatal Depression Scale (EPDS) and WHO5 Wellbeing Index indicated depressive symptoms and emotional wellbeing. Data were analysed using general linear models. Results Using an EPDS cut-off of 12/13, 18.1 % (n = 78, 95 % CI 14.6 - 22.1) of women had depressive symptoms (20.4 % urban; 15.8 % rural). Contrary to predictions, infant gender and traditional confinement were unrelated to depressive symptoms. Poverty, food insecurity, being frightened of family members, and intimate partner violence increased both depressive symptoms and lowered wellbeing. The first model accounted for 30.2 % of the variance in EPDS score and found being frightened of one’s husband, husband’s unemployment, breastfeeding difficulties, infant diarrhoea, and cognitive social capital were associated with higher EPDS scores. The second model had accounted for 22 % of the variance in WHO5 score. Living in Hue city, low education, poor maternal competence and a negative family response to the baby lowered maternal wellbeing. Conclusions Traditional confinement practices and son preference were not linked to depressive symptoms among mothers, but were correlates of family relationships and wellbeing. Poverty, food insecurity, violence, infant ill health, and discordant intimate and family relationships were linked with depressive symptoms in Central Vietnam.
Resumo:
PURPOSE The restricted genetic diversity and homogeneous molecular basis of Mendelian disorders in isolated founder populations have rarely been explored in epilepsy research. Our long-term goal is to explore the genetic basis of epilepsies in one such population, the Gypsies. The aim of this report is the clinical and genetic characterization of a Gypsy family with a partial epilepsy syndrome. METHODS Clinical information was collected using semistructured interviews with affected subjects and informants. At least one interictal electroencephalography (EEG) recording was performed for each patient and previous data obtained from records. Neuroimaging included structural magnetic resonance imaging (MRI). Linkage and haplotype analysis was performed using the Illumina IVb Linkage Panel, supplemented with highly informative microsatellites in linked regions and Affymetrix SNP 5.0 array data. RESULTS We observed an early-onset partial epilepsy syndrome with seizure semiology strongly suggestive of temporal lobe epilepsy (TLE), with mild intellectual deficit co-occurring in a large proportion of the patients. Psychiatric morbidity was common in the extended pedigree but did not cosegregate with epilepsy. Linkage analysis definitively excluded previously reported loci, and identified a novel locus on 5q31.3-q32 with an logarithm of the odds (LOD) score of 3 corresponding to the expected maximum in this family. DISCUSSION The syndrome can be classified as familial temporal lobe epilepsy (FTLE) or possibly a new syndrome with mild intellectual deficit. The linked 5q region does not contain any ion channel-encoding genes and is thus likely to contribute new knowledge about epilepsy pathogenesis. Identification of the mutation in this family and in additional patients will define the full phenotypic spectrum.
Resumo:
Over recent years, the focus in road safety has shifted towards a greater understanding of road crash serious injuries in addition to fatalities. Police reported crash data are often the primary source of crash information; however, the definition of serious injury within these data is not consistent across jurisdictions and may not be accurately operationalised. This study examined the linkage of police-reported road crash data with hospital data to explore the potential for linked data to enhance the quantification of serious injury. Data from the Queensland Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection (QHAPDC), Emergency Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU) for the year 2009 were linked. Nine different estimates of serious road crash injury were produced. Results showed that there was a large amount of variation in the estimates of the number and profile of serious road crash injuries depending on the definition or measure used. The results also showed that as the definition of serious injury becomes more precise the vulnerable road users become more prominent. These results have major implications in terms of how serious injuries are identified for reporting purposes. Depending on the definitions used, the calculation of cost and understanding of the impact of serious injuries would vary greatly. This study has shown how data linkage can be used to investigate issues of data quality. It has also demonstrated the potential improvements to the understanding of the road safety problem, particularly serious injury, by conducting data linkage.
Resumo:
Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.
Resumo:
This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.