488 resultados para learning science
Resumo:
The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.
Resumo:
Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.
Resumo:
The problem of decision making in an uncertain environment arises in many diverse contexts: deciding whether to keep a hard drive spinning in a net-book; choosing which advertisement to post to a Web site visitor; choosing how many newspapers to order so as to maximize profits; or choosing a route to recommend to a driver given limited and possibly out-of-date information about traffic conditions. All are sequential decision problems, since earlier decisions affect subsequent performance; all require adaptive approaches, since they involve significant uncertainty. The key issue in effectively solving problems like these is known as the exploration/exploitation trade-off: If I am at a cross-roads, when should I go in the most advantageous direction among those that I have already explored, and when should I strike out in a new direction, in the hopes I will discover something better?
Resumo:
Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Resumo:
In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.
Resumo:
We consider the problem of prediction with expert advice in the setting where a forecaster is presented with several online prediction tasks. Instead of competing against the best expert separately on each task, we assume the tasks are related, and thus we expect that a few experts will perform well on the entire set of tasks. That is, our forecaster would like, on each task, to compete against the best expert chosen from a small set of experts. While we describe the "ideal" algorithm and its performance bound, we show that the computation required for this algorithm is as hard as computation of a matrix permanent. We present an efficient algorithm based on mixing priors, and prove a bound that is nearly as good for the sequential task presentation case. We also consider a harder case where the task may change arbitrarily from round to round, and we develop an efficient approximate randomized algorithm based on Markov chain Monte Carlo techniques.
Resumo:
Land-change science emphasizes the intimate linkages between the human and environmental components of land management systems. Recent theoretical developments in drylands identify a small set of key principles that can guide the understanding of these linkages. Using these principles, a detailed study of seven major degradation episodes over the past century in Australian grazed rangelands was reanalyzed to show a common set of events: (i) good climatic and economic conditions for a period, leading to local and regional social responses of increasing stocking rates, setting the preconditions for rapid environmental collapse, followed by (ii) a major drought coupled with a fall in the market making destocking financially unattractive, further exacerbating the pressure on the environment; then (iii) permanent or temporary declines in grazing productivity, depending on follow-up seasons coupled again with market and social conditions. The analysis supports recent theoretical developments but shows that the establishment of environmental knowledge that is strictly local may be insufficient on its own for sustainable management. Learning systems based in a wider community are needed that combine local knowledge, formal research, and institutional support. It also illustrates how natural variability in the state of both ecological and social systems can interact to precipitate nonequilibrial change in each other, so that planning cannot be based only on average conditions. Indeed, it is this variability in both environment and social subsystems that hinders the local learning required to prevent collapse.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS educative practice in helping to foster web 2.0 professionals.
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.