577 resultados para giant cell granuloma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis. © 2008 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of cells to adhere, spread and migrate is essential to many physiological processes, particularly in the immune system where cells must traffic to sites of inflammation and injury. By altering the levels of individual components of the VAMP3/Stx4/SNAP23 complex we show here that this SNARE complex regulates efficient macrophage adhesion, spreading and migration on fibronectin. During cell spreading this complex mediates the polarised exocytosis of VAMP3- positive recycling endosome membrane into areas of membrane expansion, where VAMP3's surface partner Q-SNARE complex Stx4/SNAP23 was found to accumulate. Lowering the levels of VAMP3 in spreading cells resulted in a more rounded cell morphology and most cells were found to be devoid of the typical ring-like podosome superstructures seen normally in spreading cells. In migrating cells lowering VAMP3 levels disrupted the polarised localisation of podosome clusters. The reduced trafficking of recycling endosome membrane to sites of cell spreading and the disorganised podosome localisation in migrating macrophages greatly reduced their ability to persistently migrate on fibronectin. Thus, this important SNARE complex facilitates macrophage adhesion, spreading, and persistent macrophage migration on fibronectin through the delivery of VAMP3-positive membrane with its cargo to expand the plasma membrane and to participate in organising adhesive podosome structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice based model is that a proliferative population will always eventually fill the lattice. Here we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental setups. Lattice-free simulation results are compared to these mean-field descriptions and to a corresponding lattice-based model. Data from a proliferation experiment is used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal regeneration. In order to achieve simultaneous alveolar bone and periodontal ligament regeneration a cell-based strategy was carried out by combining osteoblast culture in the bone compartment and placement of multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. In vitro data showed that the osteoblasts formed mineralized matrix in the bone compartment after 21 days in culture and that the PDL cell sheet harvesting did not induce significant cell death. The cell-seeded biphasic scaffolds were placed onto a dentin block and implanted for 8 weeks in an athymic rat subcutaneous model. The scaffolds were analyzed by μCT, immunohistochemistry and histology. In the bone compartment, a more intense ALP staining was obtained following seeding with osteoblasts, confirming the μCT results which showed higher mineralization density for these scaffolds. A thin mineralized cementum-like tissue was deposited on the dentin surface for the scaffolds incorporating the multiple PDL cell sheets, as observed by H&E and Azan staining. These scaffolds also demonstrated better attachment onto the dentin surface compared to no attachment when no cell sheets were used. In addition, immunohistochemistry revealed the presence of CEMP1 protein at the interface with the dentine. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changing sodium intake from 70-200 mmol/day elevates blood pressure in normotensive volunteers by 6/4 mmHg. Older people, people with reduced renal function on a low sodium diet and people with a family history of hypertension are more likely to show this effect. The rise in blood pressure was associated with a fall in plasma volume suggesting that plasma volume changes do not initiate hypertension. In normotensive individuals the most common abnormality in membrane sodium transport induced by an extra sodium load was an increased permeability of the red cell to sodium. Some normotensive individuals also had an increase in the level of a plasma inhibitor that inhibited Na-K ATPase. These individuals also appeared to have a rise in blood pressure. Sodium intake and blood pressure are related. The relationship differs in different people and is probably controlled by the genetically inherited capacity of systems involved in membrane sodium transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer.