332 resultados para decomposition techniques
Understanding the mechanisms of graft union formation in solanaceae plants using in vitro techniques
Resumo:
In general, the benefits of using cooperative learning include academic achievement, communication skills, problem-solving, social skills and student motivation. Yet cooperative learning as a Western educational concept may be ineffective in a different learning system. The study aims to investigate scaffolding techniques for cooperative learning in Thailand primary education. The program was designed to foster Thai primary school teachers’ cooperative learning implementation that includes the basic tenets of cooperative learning and socio-cognitive based learning. Two teachers were invited to participate in this experimental teacher training program for one and a half weeks. Then the teachers implemented a cooperative learning in their mathematics class for six weeks. The data from teacher interview and classroom observation indicated that the both teachers are able to utilise questions to scaffold their students’ engagement in cooperative learning. This initiative study showed that difficulty or failure of implementing cooperative learning in Thailand education may not be derived from cultural difference. The paper discussed the techniques the participant teachers applied with proactive scaffolding, reactive scaffolding and scaffolding questions that can be used to facilitate the implementation of cooperative learning in Thai school.
Resumo:
In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.
Resumo:
Texture analysis and textural cues have been applied for image classification, segmentation and pattern recognition. Dominant texture descriptors include directionality, coarseness, line-likeness etc. In this dissertation a class of textures known as particulate textures are defined, which are predominantly coarse or blob-like. The set of features that characterise particulate textures are different from those that characterise classical textures. These features are micro-texture, macro-texture, size, shape and compaction. Classical texture analysis techniques do not adequately capture particulate texture features. This gap is identified and new methods for analysing particulate textures are proposed. The levels of complexity in particulate textures are also presented ranging from the simplest images where blob-like particles are easily isolated from their back- ground to the more complex images where the particles and the background are not easily separable or the particles are occluded. Simple particulate images can be analysed for particle shapes and sizes. Complex particulate texture images, on the other hand, often permit only the estimation of particle dimensions. Real life applications of particulate textures are reviewed, including applications to sedimentology, granulometry and road surface texture analysis. A new framework for computation of particulate shape is proposed. A granulometric approach for particle size estimation based on edge detection is developed which can be adapted to the gray level of the images by varying its parameters. This study binds visual texture analysis and road surface macrotexture in a theoretical framework, thus making it possible to apply monocular imaging techniques to road surface texture analysis. Results from the application of the developed algorithm to road surface macro-texture, are compared with results based on Fourier spectra, the auto- correlation function and wavelet decomposition, indicating the superior performance of the proposed technique. The influence of image acquisition conditions such as illumination and camera angle on the results was systematically analysed. Experimental data was collected from over 5km of road in Brisbane and the estimated coarseness along the road was compared with laser profilometer measurements. Coefficient of determination R2 exceeding 0.9 was obtained when correlating the proposed imaging technique with the state of the art Sensor Measured Texture Depth (SMTD) obtained using laser profilometers.
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
Diesel engine fuel injector faults can lead to reduced power, increased fuel consumption and greater exhaust emission levels and if left unchecked, can eventually lead to premature engine failure. This paper provides an overview of the Diesel, or compression ignition combustion process, and of the two basic fuel injector nozzle designs used in Diesel engines, namely, the pintle-type and hole-type nozzles. Also described are some common faults associated with these two types of fuel injector nozzles and the techniques previously used to experimentally simulate these faults. This paper also presents a recent experimental campaign undertaken using two different diesel engines whereby various fuel injector nozzle faults were induced into the engines. The first series of tests was undertaken using a turbo-charged 5.9 litre; Cummins Diesel engine whist the second series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine. Data corresponding to different injector fault conditions was captured using in-cylinder pressure, and acoustic emission transducers along with both crank-angle encoder and top-dead centre reference signals. Using averaged in-cylinder pressure signals, it was possible to qualify the severity of the faults whilst averaged acoustic emission signals were in turn, used as the basis for wavelets decomposition. Initial observations from this signal decomposition are also presented and discussed.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.