239 resultados para Traffic fatalities
Resumo:
Residential balcony design influences speech interference levels caused by road traffic noise and a simplified design methodology is needed for optimising balcony acoustic treatments. This research comprehensively assesses speech interference levels and benefits of nine different balcony designs situated in urban street canyons through the use of a combined direct, specular reflection and diffuse reflection path theoretical model. This thesis outlines the theory, analysis and results that lead up to the presentation of a practical design guide which can be used to predict the acoustic effects of balcony geometry and acoustic treatments in streets with variable geometry and acoustic characteristics.
Resumo:
Singapore is a highly urbanized city-state country where walking is an important mode of travel. Pedestrians form about 25% of road fatalities every year, making them one of the most vulnerable road user groups in Singapore. Engineering measures like provision of overhead pedestrian crossings and raised zebra crossings tend to address pedestrian safety in general, but there may be occasions where pedestrians are particularly vulnerable so that targeted interventions are more appropriate. The objective of this study is to identify factors and situations that affect the injury severity of pedestrians involved in traffic crashes. Six years of crash data from 2003 to 2008 containing around four thousands pedestrian crashes at roadway segments were analyzed. Injury severity of pedestrians—recorded as slight injury, major injury and fatal—were modeled as a function of roadway characteristics, traffic features, environmental factors and pedestrian demographics by an ordered probit model. Results suggest that the injury severity of pedestrians involved in crashes during night time is higher indicating that pedestrian visibility during night is a key issue in pedestrian safety. The likelihood of fatal or serious injuries is higher for crashes on roads with high speed limit, center and median lane of multi-lane roads, school zones, roads with two-way divided traffic type, and when pedestrians cross the roads. Elderly pedestrians appear to be involved in fatal and serious injury crashes more when they attempt to cross the road without using nearby crossing facilities. Specific countermeasures are recommended based on the findings of this study.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
In this paper we explore the relationship between monthly random breath testing (RBT) rates (per 1000 licensed drivers) and alcohol-related traffic crash (ARTC) rates over time, across two Australian states: Queensland and Western Australia. We analyse the RBT, ARTC and licensed driver rates across 12 years; however, due to administrative restrictions, we model ARTC rates against RBT rates for the period July 2004 to June 2009. The Queensland data reveals that the monthly ARTC rate is almost flat over the five year period. Based on the results of the analysis, an average of 5.5 ARTCs per 100,000 licensed drivers are observed across the study period. For the same period, the monthly rate of RBTs per 1000 licensed drivers is observed to be decreasing across the study with the results of the analysis revealing no significant variations in the data. The comparison between Western Australia and Queensland shows that Queensland's ARTC monthly percent change (MPC) is 0.014 compared to the MPC of 0.47 for Western Australia. While Queensland maintains a relatively flat ARTC rate, the ARTC rate in Western Australia is increasing. Our analysis reveals an inverse relationship between ARTC RBT rates, that for every 10% increase in the percentage of RBTs to licensed driver there is a 0.15 decrease in the rate of ARTCs per 100,000 licenced drivers. Moreover, in Western Australia, if the 2011 ratio of 1:2 (RBTs to annual number of licensed drivers) were to double to a ratio of 1:1, we estimate the number of monthly ARTCs would reduce by approximately 15. Based on these findings we believe that as the number of RBTs conducted increases the number of drivers willing to risk being detected for drinking driving decreases, because the perceived risk of being detected is considered greater. This is turn results in the number of ARTCs diminishing. The results of this study provide an important evidence base for policy decisions for RBT operations.
Resumo:
Context Alcohol-related traffic offences and associated trauma have attracted attention in China in recent years, culminating in changes to national legislation in May 2011. Harsher penalties were introduced, particularly for offences where blood alcohol concentration (BAC) levels above 80mg/100mL are recorded. Deemed to be drunk under the law, this is now a criminal offence attracting penalties including large monetary fines, licence suspension for 5 years and imprisonment. Objective This paper outlines key statistics about alcohol-related road trauma in Zhejiang Province and strategies used to combat drink- and drunk-driving. Key Outcomes Zhejiang Province, in China’s south east, has a population of approximately 54, 426,000; 22.36% hold a driving licence. Rapid motorisation is occurring there. In 2011, 1,383,318 new licences were issued, representing a 16.78% increase from the previous year. In 2012, there were a total of 65,000 police officers throughout the Province, 12,307 of whom (18.9%) were traffic police. Responsibility for conducting alcohol testing is the responsibility of all traffic police. The number of alcohol breath tests conducted per year was not available. However, traffic police are actively enforcing alcohol-related laws. In 2011, 89,228 drivers were charged with drink-driving (DUI;20-80mg/100 mL) and 10,014 with the more serious drunk-driving offence (DWI;>80mg/100mL) (Zhejiang Traffic Management Department, 2012). These numbers decreased from the previous year (221,262 and 26,390 respectively). For all crashes recorded in 2011 (n=20,176), 2% involved alcohol-impaired road users. Information on the role of alcohol in crashes from previous years was not available. Discussion Various strategies are employed to detect alcohol-impaired drivers including: targeting vehicles from hotels/restaurants; using sense of smell to screen drivers for further testing; passive alcohol sensors to test drivers; and blood tests for crash-involved drivers where a fatality occurred. Although resources to promote road safety are limited, various government initiatives promote awareness of the dangers of alcohol-related driving and more are needed in future.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.
Resumo:
Drink walking, that is walking in a public place while intoxicated, is associated with increased risk of injury and fatality. Young people and males are especially prone to engaging in this behaviour, yet little is known about the factors associated with individual’s decisions to drink walk. The present research explores the role of different normative influences (friendship group norm, parent group norm, university peer group norm) and perceived risk, within an extended theory of planned behaviour (TPB) framework, in predicting young people’s self-reported drink walking intentions. One hundred and eighteen young people (aged 17-25 years) completed a survey including sociodemographic measures and extended TPB measures related to drink walking. Overall the extended TPB explained 72.8% of the variance in young people’s intentions to drink walk in the next six months with attitude, perceived behavioural control, friendship group norm, and gender (male) emerging as significant predictors. Males, as compared with females, had higher intentions to drink walk and lower perceptions of risk regarding drink walking. Together, these findings provide a clearer indication of the salient normative influences and gender differences in young pedestrian’s decisions to walk while intoxicated. Such findings can be used to inform future interventions designed to reduce injuries and fatalities associated with drink walking.
Resumo:
This paper shows that traffic hysteresis, a manifestation of driver characteristics, has a profound impact on the development of traffic oscillations and the bottleneck discharge rate. Findings suggest that aggressive driver behavior (with small response times and jammed spacing) leads to spontaneous formations of stop-and-go disturbances. Furthermore, the aggressive behavior, coupled with a late response to adopt less aggressive behavior, generates large hysteresis that leads to oscillations’ transformation from localized to substantial disturbances and growth. The larger the magnitude of hysteresis is, the larger the growth is. Our finding also suggests that the bottleneck discharge rate can diminish by 8-23% when driver adopts a less aggressive reaction to a disturbance (characterized by a larger response time). This finding is particularly notable since lane-changes have been believed to be the major cause of a reduction in bottleneck discharge rate.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sizedtrucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
Exposure control or case-control methodologies are common techniques for estimating crash risks, however they require either observational data on control cases or exogenous exposure data, such as vehicle-kilometres travelled. This study proposes an alternative methodology for estimating crash risk of road user groups, whilst controlling for exposure under a variety of roadway, traffic and environmental factors by using readily available police-reported crash data. In particular, the proposed method employs a combination of a log-linear model and quasi-induced exposure technique to identify significant interactions among a range of roadway, environmental and traffic conditions to estimate associated crash risks. The proposed methodology is illustrated using a set of police-reported crash data from January 2004 to June 2009 on roadways in Queensland, Australia. Exposure-controlled crash risks of motorcyclists—involved in multi-vehicle crashes at intersections—were estimated under various combinations of variables like posted speed limit, intersection control type, intersection configuration, and lighting condition. Results show that the crash risk of motorcycles at three-legged intersections is high if the posted speed limits along the approaches are greater than 60 km/h. The crash risk at three-legged intersections is also high when they are unsignalized. Dark lighting conditions appear to increase the crash risk of motorcycles at signalized intersections, but the problem of night time conspicuity of motorcyclists at intersections is lessened on approaches with lower speed limits. This study demonstrates that this combined methodology is a promising tool for gaining new insights into the crash risks of road user groups, and is transferrable to other road users.
Resumo:
Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.
Resumo:
The application of the Bluetooth (BT) technology to transportation has been enabling researchers to make accurate travel time observations, in freeway and arterial roads. The Bluetooth traffic data are generally incomplete, for they only relate to those vehicles that are equipped with Bluetooth devices, and that are detected by the Bluetooth sensors of the road network. The fraction of detected vehicles versus the total number of transiting vehicles is often referred to as Bluetooth Penetration Rate (BTPR). The aim of this study is to precisely define the spatio-temporal relationship between the quantities that become available through the partial, noisy BT observations; and the hidden variables that describe the actual dynamics of vehicular traffic. To do so, we propose to incorporate a multi- class traffic model into a Sequential Montecarlo Estimation algorithm. Our framework has been applied for the empirical travel time investigations into the Brisbane Metropolitan region.
Resumo:
The study of the relationship between macroscopic traffic parameters, such as flow, speed and travel time, is essential to the understanding of the behaviour of freeway and arterial roads. However, the temporal dynamics of these parameters are difficult to model, especially for arterial roads, where the process of traffic change is driven by a variety of variables. The introduction of the Bluetooth technology into the transportation area has proven exceptionally useful for monitoring vehicular traffic, as it allows reliable estimation of travel times and traffic demands. In this work, we propose an approach based on Bayesian networks for analyzing and predicting the complex dynamics of flow or volume, based on travel time observations from Bluetooth sensors. The spatio-temporal relationship between volume and travel time is captured through a first-order transition model, and a univariate Gaussian sensor model. The two models are trained and tested on travel time and volume data, from an arterial link, collected over a period of six days. To reduce the computational costs of the inference tasks, volume is converted into a discrete variable. The discretization process is carried out through a Self-Organizing Map. Preliminary results show that a simple Bayesian network can effectively estimate and predict the complex temporal dynamics of arterial volumes from the travel time data. Not only is the model well suited to produce posterior distributions over single past, current and future states; but it also allows computing the estimations of joint distributions, over sequences of states. Furthermore, the Bayesian network can achieve excellent prediction, even when the stream of travel time observation is partially incomplete.
Resumo:
Police reported crash data are the primary source of crash information in most jurisdictions. However, the definition of serious injury within police-reported data is not consistent across jurisdictions and may not be accurate. With the Australian National Road Safety Strategy targeting the reduction of serious injuries, there is a greater need to assess the accuracy of the methods used to identify these injuries. A possible source of more accurate information relating to injury severity is hospital data. While other studies have compared police and hospital data to highlight the under-reporting in police-reported data, little attention has been given to the accuracy of the methods used by police to identify serious injuries. The current study aimed to assess how accurate the identification of serious injuries is in police-reported crash data, by comparing the profiles of transport-related injuries in the Queensland Road Crash Database with an aligned sample of data from the Queensland Hospital Admitted Patients Data Collection. Results showed that, while a similar number of traffic injuries were recorded in both data sets, the profile of these injuries was different based on gender, age, location, and road user. The results suggest that the ‘hospitalisation’ severity category used by police may not reflect true hospitalisations in all cases. Further, it highlights the wide variety of severity levels within hospitalised cases that are not captured by the current police-reported definitions. While a data linkage study is required to confirm these results, they highlight that a reliance on police-reported serious traffic injury data alone could result in inaccurate estimates of the impact and cost of crashes and lead to a misallocation of valuable resources.