805 resultados para Tobacco Control
Resumo:
This paper considers the pros and cons of using Behavioural cloning for the development of low-level helicopter automation modules. Over the course of this project several Behavioural cloning approaches have been investigated. The results of the most effective Behavioural cloning approach are then compared to PID modules designed for the same aircraft. The comparison takes into consideration development time, reliability, and control performance. It has been found that Behavioural cloning techniques employing local approximators and a wide state-space coverage during training can produce stabilising control modules in less time than tuning PID controllers. However, performance and reliabity deficits have been found to exist with the Behavioural Cloning, attributable largely to the time variant nature of the dynamics due to the operating environment, and the pilot actions being poor for teaching. The final conclusion drawn here is that tuning PID modules remains superior to behavioural cloning for low-level helicopter automation.
Resumo:
Traditional approaches to joint control required accurate modelling of the system dynamic of the plant in question. Fuzzy Associative Memory (FAM) control schemes allow adequate control without a model of the system to be controlled. This paper presents a FAM based joint controller implemented on a humanoid robot. An empirically tuned PI velocity control loop is augmented with this feed forward FAM, with considerable reduction in joint position error achieved online and with minimal additional computational overhead.
Resumo:
The Series Elasic Actuator has been proposed as a method for providing safe force or torque based acutation for robots that interact with humans. In this paper we look at some outstanding issues in the implementation and control of Series Elastic Actuators. The study addresses issues in making the Series Elastic Actuator respond effectively in the presence of physical difficulties such as restriction, using a computation efficient controller. The improvement over previous implementations is achieved by treating the motor as a velocity source to the elastic element, rather than as a torque source.
Resumo:
The aim of this case-control study of 617 children was to investigate early childhood caries (ECC) risk indicators in a non-fluoridated region in Australia. ECC cases were recruited from childcare facilities, public hospitals and private specialist clinics to source children from different socioeconomic backgrounds. Non-ECC controls were recruited from the same childcare facilities. A multinomial logistic modelling approach was used for statistical analysis. The results showed that a large percentage of children tested positive for Streptococcus mutans if their mothers also tested positive. A common risk indicator found in ECC children from childcare facilities and public hospitals was visible plaque (OR 4.1, 95% CI 1.0-15.9, and OR 8.7, 95% CI 2.3-32.9, respectively). Compared to ECC-free controls, the risk indicators specific to childcare cases were enamel hypoplasia (OR 4.2, 95% CI 1.0-18.3), difficulty in cleaning child's teeth (OR 6.6, 95% CI 2.2-19.8), presence of S. mutans (OR 4.8, 95% CI 0.7-32.6), sweetened drinks (OR 4.0, 95% CI 1.2-13.6) and maternal anxiety (OR 5.1, 95% CI 1.1-25.0). Risk indicators specific to public hospital cases were S. mutans presence in child (OR 7.7, 95% CI 1.3-44.6) or mother (OR 8.1, 95% CI 0.9-72.4), ethnicity (OR 5.6, 95% CI 1.4-22.1), and access of mother to pension or health care card (OR 20.5, 95% CI 3.5-119.9). By contrast, a history of chronic ear infections was found to be protective for ECC in childcare children (OR 0.28, 95% CI 0.09-0.82). The biological, socioeconomic and maternal risk indicators demonstrated in the present study can be employed in models of ECC that can be usefully applied for future longitudinal studies.
Resumo:
The GuRoo is a 1.2 m tall, 23 degree of freedom humanoid constructed at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRoo project is the development of appropriate learning strategies for control and coordination of the robot's many joints. The development of learning strategies is seen as a way to side-step the inherent intricacy of modeling a multi-DOF biped robot. This paper outlines the approach taken to generate an appropriate control scheme for the joints of the GuRoo. The paper demonstrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-forward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on the CMAC architecture. Results from tests on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
Globally, the main contributors to morbidity and mortality are chronic diseases, including cardiovascular disease and diabetes. Chronic diseases are costly and partially avoidable, with around sixty percent of deaths and nearly fifty percent of the global disease burden attributable to these conditions. By 2020, chronic illnesses will likely be the leading cause of disability worldwide. Existing health care systems, both national and international, that focus on acute episodic health conditions, cannot address the worldwide transition to chronic illness; nor are they appropriate for the ongoing care and management of those already afflicted with chronic diseases. International and Australian strategic planning documents articulate similar elements to manage chronic disease; including the need for aligning sectoral policies for health, forming partnerships and engaging communities in decision-making. The Australian National Chronic Disease Strategy focuses on four core areas for managing chronic disease; prevention across the continuum, early detection and treatment, integrated and coordinated care, and self-management. Such a comprehensive approach incorporates the entire population continuum, from the ‘healthy’, to those with risk factors, through to people suffering from chronic conditions and their sequelae. This chapter examines comprehensive approach to the prevention, management and care of the population with non-communicable, chronic diseases and communicable diseases. It analyses models of care in the context of need, service delivery options and the potential to prevent or manage early intervention for chronic and communicable diseases. Approaches to chronic diseases require integrated approaches that incorporate interventions targeted at both individuals and populations, and emphasise the shared risk factors of different conditions. Communicable diseases are a common and significant contributor to ill health throughout the world. In many countries, this impact has been minimised by the combined efforts of preventative health measures and improved treatment of infectious diseases. However in underdeveloped nations, communicable diseases continue to contribute significantly to the burden of disease. The aim of this chapter is to outline the impact that chronic and communicable diseases have on the health of the community, the public health strategies that are used to reduce the burden of those diseases and the old and emerging risks to public health from infectious diseases.
Resumo:
Current train of thought in appetite research is favouring an interest in non-homeostatic or hedonic (reward) mechanisms in relation to overconsumption and energy balance. This tendency is supported by advances in neurobiology that precede the emergence of a new conceptual approach to reward where affect and motivation (liking and wanting) can be seen as the major force in guiding human eating behaviour. In this review, current progress in applying processes of liking and wanting to the study of human appetite are examined by discussing the following issues: How can these concepts be operationalised for use in human research to reflect the neural mechanisms by which they may be influenced? Do liking and wanting operate independently to produce functionally significant changes in behaviour? Can liking and wanting be truly experimentally separated or will an expression of one inevitably contain elements of the other? The review contains a re-examination of selected human appetite research before exploring more recent methodological approaches to the study of liking and wanting in appetite control. In addition, some theoretical developments are described in four diverse models that may enhance current understanding of the role of these processes in guiding ingestive behaviour. Finally, the implications of a dual process modulation of food reward for weight gain and obesity are discussed. The review concludes that processes of liking and wanting are likely to have independent roles in characterising susceptibility to weight gain. Further research into the dissociation of liking and wanting through implicit and explicit levels of processing would help to disclose the relative importance of these components of reward for appetite control and weight regulation.
Resumo:
GMPLS is a generalized form of MPLS (MultiProtocol Label Switching). MPLS is IP packet based and it uses MPLS-TE for Packet Traffic Engineering. GMPLS is extension to MPLS capabilities. It provides separation between transmission, control and management plane and network management. Control plane allows various applications like traffic engineering, service provisioning, and differentiated services. GMPLS control plane architecture includes signaling (RSVP-TE, CR-LDP) and routing (OSPF-TE, ISIS-TE) protocols. This paper provides an overview of the signaling protocols, describes their main functionalities, and provides a general evaluation of both the protocols.
Resumo:
Masks are widely used in different industries, for example, traditional metal industry, hospitals or semiconductor industry. Quality is a critical issue in mask industry as it is related to public health and safety. Traditional quality practices for manufacturing process have some limitations in implementing them in mask industries. This paper aims to investigate the suitability of Six Sigma quality control method for the manufacturing process in the mask industry to provide high quality products, enhancing the process capacity, reducing the defects and the returned goods arising in a selected mask manufacturing company. This paper suggests that modifications necessary in Six Sigma method for effective implementation in mask industry.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
Typical quadrotor aerial robots used in research weigh inlMMLBox and carry payloads measured in hundreds of grams. Several obstacles in design and control must be overcome to cater for expected industry demands that push the boundaries of existing quadrotor performance. The X-4 Flyer, a 4 kg quadrotor with a 1 kg payload, is intended to be prototypical of useful commercial quadrotors. The custom-built craft uses tuned plant dynamics with an onboard embedded attitude controller to stabilise flight. Independent linear SISO controllers were designed to regulate flyer attitude. The performance of the system is demonstrated in indoor and outdoor flight.
Resumo:
The advantages of a spherical imaging model are increasingly well recognized within the robotics community. Perhaps less well known is the use of the sphere for attitude estimation, control and scene structure estimation. This paper proposes the sphere as a unifying concept, not just for cameras, but for sensor fusion, estimation and control. We review and summarize relevant work in these areas and illustrate this with relevant simulation examples for spherical visual servoing and scene structure estimation.
Resumo:
To date, most quad-rotor aerial robots have been based on flying toys. Although such systems can be used as prototypes, they are not sufficiently robust to serve as experimental robotics platforms. We have developed the X-4 Flyer, a quad-rotor robot using custom-built chassis and avionics with off-the-shelf motors and batteries, to be a highly reliable experimental platform. The vehicle uses tuned plant dynamics with an onboard embedded attitude controller to stabilise flight. A linear SISO controller was designed to regulate flyer attitude.
Resumo:
Fast thrust changes are important for authoritive control of VTOL micro air vehicles. Fixed-pitch rotors that alter thrust by varying rotor speed require high-bandwidth control systems to provide adequate performace. We develop a feedback compensator for a brushless hobby motor driving a custom rotor suitable for UAVs. The system plant is identified using step excitation experiments. The aerodynamic operating conditions of these rotors are unusual and so experiments are performed to characterise expected load disturbances. The plant and load models lead to a proportional controller design capable of significantly decreasing rise-time and propagation of disturbances, subject to bus voltage constraints.
Resumo:
We present details and results obtained with an underwater system comprising two different autonomous underwater robots (AUV) and ten static underwater nodes (USN) networked together optically and acoustically. The AUVs can locate and hover above the static nodes for data upload, and they can perform network maintenance functions such as deployment, relocation, and recovery. The AUVs can also locate each other, dock, and move using coordinated control that takes advantage of each AUV’s strength.