468 resultados para Stochastic dynamic programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the main studies on transit users’ route choice in thecontext of transit assignment. The studies are categorized into three groups: static transit assignment, within-day dynamic transit assignment, and emerging approaches. The motivations and behavioural assumptions of these approaches are re-examined. The first group includes shortest-path heuristics in all-or-nothing assignment, random utility maximization route-choice models in stochastic assignment, and user equilibrium based assignment. The second group covers within-day dynamics in transit users’ route choice, transit network formulations, and dynamic transit assignment. The third group introduces the emerging studies on behavioural complexities, day-to-day dynamics, and real-time dynamics in transit users’ route choice. Future research directions are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cascading appearance-based (CAB) feature extraction technique has established itself as the state-of-the-art in extracting dynamic visual speech features for speech recognition. In this paper, we will focus on investigating the effectiveness of this technique for the related speaker verification application. By investigating the speaker verification ability of each stage of the cascade we will demonstrate that the same steps taken to reduce static speaker and environmental information for the visual speech recognition application also provide similar improvements for visual speaker recognition. A further study is conducted comparing synchronous HMM (SHMM) based fusion of CAB visual features and traditional perceptual linear predictive (PLP) acoustic features to show that higher complexity inherit in the SHMM approach does not appear to provide any improvement in the final audio-visual speaker verification system over simpler utterance level score fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several noninvasive techniques for assessing the kinetics of tear film, but no comparative studies have been conducted to evaluate their efficacies. Our aim is to test and compare techniques based on high-speed videokeratoscopy (HSV), dynamic wavefront sensing (DWS), and lateral shearing interferometry (LSI). Algorithms are developed to estimate the tear film build-up time TBLD, and the average tear film surface quality in the stable phase of the interblink interval TFSQAv. Moderate but significant correlations are found between TBLD measured with LSI and DWS based on vertical coma (Pearson's r2=0.34, p<0.01) and higher order rms (r2=0.31, p<0.01), as well as between TFSQAv measured with LSI and HSV (r2=0.35, p<0.01), and between LSI and DWS based on the rms fit error (r2=0.40, p<0.01). No significant correlation is found between HSV and DWS. All three techniques estimate tear film build-up time to be below 2.5 sec, and they achieve a remarkably close median value of 0.7 sec. HSV appears to be the most precise method for measuring tear film surface quality. LSI appears to be the most sensitive method for analyzing tear film build-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We advance the proposition that dynamic stochastic general equilibrium (DSGE) models should not only be estimated and evaluated with full information methods. These require that the complete system of equations be specified properly. Some limited information analysis, which focuses upon specific equations, is therefore likely to be a useful complement to full system analysis. Two major problems occur when implementing limited information methods. These are the presence of forward-looking expectations in the system as well as unobservable non-stationary variables. We present methods for dealing with both of these difficulties, and illustrate the interaction between full and limited information methods using a well-known model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to contribute to the cross-disciplinary body of literature of identity and organisational culture. This study empirically investigated the Hatch and Schultz (2002) Organisational Identity Dynamics (OID) model to look at linkages between identity, image, and organisational culture. This study used processes defined in the OID model as a theoretical frame by which to understand the relationships between actual and espoused identity manifestations across visual identity, corporate identity, and organisational identity. The linking processes of impressing, mirroring, reflecting, and expressing were discussed at three unique levels in the organisation. The overarching research question of How does the organisational identity dynamics process manifest itself in practice at different levels within an organisation? was used as a means of providing empirical understanding to the previously theoretical OID model. Case study analysis was utilised to provide exploratory data across the organisational groups of: Level A - Senior Marketing and Corporate Communications Management, Level B - Marketing and Corporate Communications Staff, and Level C - Non-Marketing Managers and Employees. Data was collected via 15 in-depth interviews with documentary analysis used as a supporting mechanism to provide triangulation in analysis. Data was analysed against the impressing, mirroring, reflecting, and expressing constructs with specific criteria developed from literature to provide a detailed analysis of each process. Conclusions revealed marked differences in the ways in which OID processes occurred across different levels with implications for the ways in which VI, CI, and OI interact to develop holistic identity across organisational levels. Implications for theory detail the need to understand and utilise cultural understanding in identity programs as well as the value in developing identity communications which represent an actual rather than an espoused position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This tutorial is designed to help new users become familiar with using the Spartan-3E board. The tutorial steps through the following: writing a small program in VHDL which carries out simple combinational logic; connecting the program inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board; and downloading the program to the Spartan-3E board using the Project Navigator software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process models in organizational collections are typically modeled by the same team and using the same conventions. As such, these models share many characteristic features like size range, type and frequency of errors. In most cases merely small samples of these collections are available due to e.g. the sensitive information they contain. Because of their sizes, these samples may not provide an accurate representation of the characteristics of the originating collection. This paper deals with the problem of constructing collections of process models, in the form of Petri nets, from small samples of a collection for accurate estimations of the characteristics of this collection. Given a small sample of process models drawn from a real-life collection, we mine a set of generation parameters that we use to generate arbitrary-large collections that feature the same characteristics of the original collection. In this way we can estimate the characteristics of the original collection on the generated collections.We extensively evaluate the quality of our technique on various sample datasets drawn from both research and industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter considers how teachers can make a difference to the kinds of literacy young people take up. Increasingly, researchers and policy-makers see literacy as an ensemble of socio-cultural situated practices rather than as a unitary skill. Accordingly, the differences in what young people come to do with literacy, in and out of school, confront us more directly. If literacy development involves assembling dynamic repertoires of practices, it is crucial to consider what different groups of children growing up and going to school in different places have access to and make investments in over time; the kinds of literate communities from which some are excluded or included; and how educators make a difference to the kinds of literate trajectories and identities young people put together.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.