202 resultados para Quasi-Normalité
Resumo:
Failures on rolling element bearings usually originate from cracks that are detectable even in their early stage of propogation by properly analyzing vibration signals measured in the proximity of the bearing. Due to micro-slipping in the roller-races contact, damage-induced vibration signals belong to the family of quasi-periodic signals with a strong second order cyclostationary component. Cyclic coherence and its integrated form are widely considered as the most suitable tools for bearing fault diagnostics and their theoretical bases have been already consolidated. This paper presents how to correctly set the parameters of the cyclostationary analysis tool to be implemented in an automatable algorithm. In the first part of the paper some general guidelines are provided for the specific application. These considerations are further verified, applying cyclostationary tools to data collected in an experimental campaign on a specific test-rig.
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.
Resumo:
A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.
Resumo:
We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.
Resumo:
In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.
Resumo:
We describe the advantages of dual-gate thin-film transistors (TFTs) for display applications. We show that in TFTs with active semiconductor layers composed of diketopyrrolopyrrole-naphthalene copolymer, the on-current is increased, the off-current is reduced, and the sub-threshold swing is improved compared to single-gate devices. Charge transport measurements in steady-state and under non-quasi-static conditions reveal the reasons for this improved performance. We show that in dual-gate devices, a much smaller fraction of charge carriers move in slow trap states. We also compare the activation energies for charge transport in the top-gate and bottom-gate configurations.
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
Background Chronic kidney disease is a global public health problem of increasing prevalence. There are five stages of kidney disease, with Stage 5 indicating end stage kidney disease (ESKD) requiring dialysis or death will eventually occur. Over the last two decades there have been increasing numbers of people commencing dialysis. A majority of this increase has occurred in the population of people who are 65 years and over. With the older population it is difficult to determine at times whether dialysis will provide any benefit over non-dialysis management. The poor prognosis for the population over 65 years raises issues around management of ESKD in this population. It is therefore important to review any research that has been undertaken in this area which compares outcomes of the older ESKD population who have commenced dialysis with those who have received non-dialysis management. Objective The primary objective was to assess the effect of dialysis compared with non-dialysis management for the population of 65 years and over with ESKD. Inclusion criteria Types of participants This review considered studies that included participants who were 65 years and older. These participants needed to have been diagnosed with ESKD for greater than three months and also be either receiving renal replacement therapy (RRT) (hemodialysis [HD] or peritoneal dialysis [PD]) or non-dialysis management. The settings for the studies included the home, self-care centre, satellite centre, hospital, hospice or nursing home. Types of intervention(s)/phenomena of interest This review considered studies where the intervention was RRT (HD or PD) for the participants with ESKD. There was no restriction on frequency of RRT or length of time the participant received RRT. The comparator was participants who were not undergoing RRT. Types of studies This review considered both experimental and epidemiological study designs including randomized controlled trials, non-randomized controlled trials, quasi-experimental, before and after studies, prospective and retrospective cohort studies, case control studies and analytical cross sectional studies. This review also considered descriptive epidemiological study designs including case series, individual case reports and descriptive cross sectional studies for inclusion. This review included any of the following primary and secondary outcome measures: •Primary outcome – survival measures •Secondary outcomes – functional performance score (e.g. Karnofsky Performance score) •Symptoms and severity of end stage kidney disease •Hospital admissions •Health related quality of life (e.g. KDQOL, SF36 and HRQOL) •Comorbidities (e.g. Charlson Comorbidity index).
Resumo:
Objective. To assess the effectiveness of workplace interventions in improving physical activity. Data Source. EBSCO research database (and all subdatabases). Study Inclusion and Exclusion Criteria. Articles were published from 2000 to 2010 in English, had appropriate designs, and measured employees' physical activity, energy consumption, and/or body mass index (BMI) as primary outcomes. Articles that did not meet the inclusion criteria were excluded. Data Extraction. Data extracted included study design, study population, duration, intervention activities, outcomes, and results. Data Synthesis. Data were synthesized into one table. Results of each relevant outcome including p values were combined. Results. Twelve (60%) of 20 selected interventions reported an improvement in physical activity level, steps, or BMI, and there was one slowed step reduction in the intervention group. Among these, 10 were less than 6 months in duration; 9 used pedometers; 6 applied Internet-based approaches; and 5 included activities targeting social and environmental levels. Seven of 8 interventions with pre-posttest and quasi-experimental controlled design showed improvement on at least one outcome. However, 7 of 12 randomized controlled trials (RCTs) did not prove effective in any outcome. Conclusion. Interventions that had less rigorous research designs, used pedometers, applied Internet-based approaches, and included activities at social and environmental levels were more likely to report being effective than those without these characteristics.
Resumo:
Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.
Resumo:
This thesis examines how psychosocial factors influence the report of persistent symptoms after mild traumatic brain injury. Using quasi-experimental methods, the research program demonstrates how factors unrelated to trauma-induced physiological brain damage can contribute to persistent symptoms after a mild traumatic brain injury. The results of this thesis highlight the possibility that outcome from mild traumatic brain injury could be improved by targeting psychosocial factors.
Resumo:
This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.
Resumo:
This paper examines the social licence to operate (SLO) of Western Australia's (WA's) mining industry in the context of the state's ‘developmentalist’ agenda. We draw on the findings of a multi-disciplinary body of new research on the risks and challenges posed byWA's mining industry for environmental, social and economic sustainability. We synthesise the findings of this work against the backdrop of the broader debates on corporate social responsibility (CSR) and resource governance. In light of the data presented, this paper takes issue with the mining sector's SLO and its assessment of social and environmental impacts in WA for three inter-related reasons. A state government ideologically wedded to resource-led growth is seen to offer the resource sector a political licence to operate and to give insufficient attention to its potential social and environmental impacts. As a result, the resource sector can adopt a self-serving CSR agenda built on a limited win–win logic and operate with a ‘quasi social licence’ that is restricted to mere economic legitimacy. Overall, this paper problematises the political-cum-commercial construction and neoliberalisation of the SLO and raises questions about the impact of mining in WA.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.