224 resultados para Problem solving Graphic methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating Science, Technology, Engineering and Mathematics (STEM) subjects can be engaging for students, can promote problem-solving and critical thinking skills and can help build real-world connections. However, STEM has long been an area of some confusion for some educators. While they can see many of the conceptual links between the various domains of knowledge they often struggle to meaningfully integrate and simultaneously teach the content and methodologies of each these areas in a unified and effective way for their students. Essentially the question is;how can the content and processes of four disparate and yet integrated learning areas be taught at the same time? How can the integrity of each of the areas be maintained and yet be learnt in a way that is complementary? Often institutional barriers exitin schools and universities to the integration of STEM. Organizationally, at a departmental and administrative level, the teaching staff may be co-located, but when it comes to classroom practice or the teaching and learning of these areas they are usually taught very separately. They are usually taught in different kinds of spaces, in different ways (using different pedagogical approaches) and at different times. But is this the best way for students to engage with the STEM areas of learning? How can we make learning more integrated, meaningful and engaging for the students?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The knowledge economy of the 21st century requires skills such as creativity, critical thinking, problem solving, communication and collaboration (Partnership for 21st century skills, 2011) – skills that cannot easily be learnt from books, but rather through learning-by-doing and social interaction. Big ideas and disruptive innovation often result from collaboration between individuals from diverse backgrounds and areas of expertise. Public libraries, as facilitators of education and knowledge, have been actively seeking responses to such changing needs of the general public...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article argues for an interdisciplinary approach to mathematical problem solving at the elementary school, one that draws upon the engineering domain. A modeling approach, using engineering model eliciting activities, might provide a rich source of meaningful situations that capitalize on and extend students’ existing mathematical learning. The study reports on the developments of 48 twelve-year old students who worked on the Bridge Design activity. Results revealed that young students, even before formal instruction, have the capacity to deal with complex interdisciplinary problems. A number of students created quite appropriate models by developing the necessary mathematical constructs to solve the problem. Students’ difficulties in mathematizing the problem, and in revising and documenting their models are presented and analysed, followed by a discussion on the appropriateness of a modeling approach as a means for introducing complex problems to elementary school students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SimCalc Vision and Contributions Advances in Mathematics Education 2013, pp 419-436 Modeling as a Means for Making Powerful Ideas Accessible to Children at an Early Age Richard Lesh, Lyn English, Serife Sevis, Chanda Riggs … show all 4 hide » Look Inside » Get Access Abstract In modern societies in the 21st century, significant changes have been occurring in the kinds of “mathematical thinking” that are needed outside of school. Even in the case of primary school children (grades K-2), children not only encounter situations where numbers refer to sets of discrete objects that can be counted. Numbers also are used to describe situations that involve continuous quantities (inches, feet, pounds, etc.), signed quantities, quantities that have both magnitude and direction, locations (coordinates, or ordinal quantities), transformations (actions), accumulating quantities, continually changing quantities, and other kinds of mathematical objects. Furthermore, if we ask, what kind of situations can children use numbers to describe? rather than restricting attention to situations where children should be able to calculate correctly, then this study shows that average ability children in grades K-2 are (and need to be) able to productively mathematize situations that involve far more than simple counts. Similarly, whereas nearly the entire K-16 mathematics curriculum is restricted to situations that can be mathematized using a single input-output rule going in one direction, even the lives of primary school children are filled with situations that involve several interacting actions—and which involve feedback loops, second-order effects, and issues such as maximization, minimization, or stabilizations (which, many years ago, needed to be postponed until students had been introduced to calculus). …This brief paper demonstrates that, if children’s stories are used to introduce simulations of “real life” problem solving situations, then average ability primary school children are quite capable of dealing productively with 60-minute problems that involve (a) many kinds of quantities in addition to “counts,” (b) integrated collections of concepts associated with a variety of textbook topic areas, (c) interactions among several different actors, and (d) issues such as maximization, minimization, and stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2000 there has been pressure on education systems for develop in students a number of competences that are described as generic. This pressure stems from studies of the changing nature of work in the Knowledge Society that is now so dominant. The DeSeCo project identified a number of these competences, and listed them under the headings of communicative, analytical and personal. They include thinking, creativity, communication skills, knowing how to learn, working in teams, adapting to change, and problem solving. These competences pose a substantial challenge to the manner in which education as a whole, and science education in particular, has hitherto been generally conceived. It is now common to find their importance acknowledged in new formulation of the curriculum. The paper reviews a number of these curriculum documents and how they have tried to relate these competences to the teaching and learning of Science, a subject with its own very specific content for learning. It will be suggested that the challenge provides an opportunity for a reconstruction of the teaching and learning of science in schools that will increase its effectiveness for more students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Australian study explores the mentoring of pre-service teachers in selecting and implementing teaching strategies to meet students‟ learning needs. Two case studies involving 28 mentor teachers in a professional development program and a mentor-mentee partnership during a four week practicum provided data about mentoring teaching strategies for differentiated learning. Findings showed that contexts for learning about differentiation occurred at the pre action, in-action, and post-action stages. Central to each stage were pedagogical knowledge practices such as planning, preparation, classroom management, assessment, and problem solving (reflection-in-action to present solutions to problems) as key to in-action strategising and the mentoring processes. Mentoring pre-service teachers on how to devise teaching strategies for differentiated learning needs to be researched with a wider range of mentors and pre-service teachers, including those at different stages of development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teachers need professional development to keep current with teaching practices, although costs for extensive professional development can be prohibitive across an education system. Mentoring provides one way for embedding cost-effective professional development. This mixed-method study includes surveying mentor teachers (n = 101) on a five-part Likert scale and interviews with experienced mentors (n = 10) to investigate professional development for mentors as a result of the mentoring process. Quantitative data were analysed through a pedagogical knowledge framework and qualitative data were collated into themes. Survey data showed that although mentoring of pedagogical knowledge was variable, mentoring pedagogical knowledge practices occurs with the majority of mentors, which requires mentors to evaluate and articulate teaching practices. Qualitative data showed that mentoring acted as professional development and led towards enhancing communication skills, developing leadership roles (problem-solving and building capacity) and advancing pedagogical knowledge. Providing professional development to teachers on mentoring can help to build capacity in two ways: quality mentoring of preservice teachers through explicit mentoring practices, and reflecting and deconstructing teaching practices for mentors’ own pedagogical advancements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because professions seek graduates who can 'collaborate, share skills and knowledge, and communicate' (Kruck and Reif, 2001, p 37), it is important that university graduates are not equipped solely with the content knowledge of their discipline, but also with prospective employment skills. Furthermore, when students 'interact more in positive ways with their teachers and peers, they gain more in terms of essential skills and competencies, such as critical thinking, problem~solving [and] effective communication' (NSSE, 2000, p 2)./n this way, peer assisted fellowing has the potential to enhance students' professional development, and provide the social inclusion and engagement necessary for effective learning. This session describes two peer assisted learning models embedded within first year QUT Faculty of Law units. Through a partnership between teaching staff, student mentors and mentees, the models aim to facilitate student socialisation whilst supplementing understanding of substantive law with the development of academic and work·related skills. Mentor and mentee perceptions, and program implications, are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theme Paper for Curriculum innovation and enhancement theme AIM: This paper reports on a research project that trialled an educational strategy implemented in an undergraduate nursing curriculum. The project aimed to explore the effectiveness of ‘think aloud’ as a strategy for improving clinical reasoning for students in simulated clinical settings. BACKGROUND: Nurses are required to apply and utilise critical thinking skills to enable clinical reasoning and problem solving in the clinical setting (Lasater, 2007). Nursing students are expected to develop and display clinical reasoning skills in practice, but may struggle articulating reasons behind decisions about patient care. The ‘think aloud’ approach is an innovative learning/teaching method which can create an environment suitable for developing clinical reasoning skills in students (Banning, 2008, Lee and Ryan-Wenger, 1997). This project used the ‘think aloud’ strategy within a simulation context to provide a safe learning environment in which third year students were assisted to uncover cognitive approaches to assist in making effective patient care decisions, and improve their confidence, clinical reasoning and active critical reflection about their practice. MEHODS: In semester 2 2011 at QUT, third year nursing students undertook high fidelity simulation (some for the first time), commencing in September of 2011. There were two cohorts for strategy implementation (group 1= used think aloud as a strategy within the simulation, group 2= no specific strategy outside of nursing assessment frameworks used by all students) in relation to problem solving patient needs. The think aloud strategy was described to students in their pre-simulation briefing and allowed time for clarification of this strategy. All other aspects of the simulations remained the same, (resources, suggested nursing assessment frameworks, simulation session duration, size of simulation teams, preparatory materials). Ethics approval has been obtained for this project. RESULTS: Results of a qualitative analysis (in progress- will be completed by March 2012) of student and facilitator reports on students’ ability to meet the learning objectives of solving patient problems using clinical reasoning and experience with the ‘think aloud’ method will be presented. A comparison of clinical reasoning learning outcomes between the two groups will determine the effect on clinical reasoning for students responding to patient problems. CONCLUSIONS: In an environment of increasingly constrained clinical placement opportunities, exploration of alternate strategies to improve critical thinking skills and develop clinical reasoning and problem solving for nursing students is imperative in preparing nurses to respond to changing patient needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the findings from the first phase of a larger study into the information literacy of website designers. Using a phenomenographic approach, it maps the variation in experiencing the phenomenon of information literacy from the viewpoint of website designers. The current result reveals important insights into the lived experience of this group of professionals. Analysis of data has identified five different ways in which website designers experience information literacy: problem-solving, using best practices, using a knowledge base, building a successful website, and being part of a learning community of practice. As there is presently relatively little research in the area of workplace information literacy, this study provides important additional insights into our understanding of information literacy in the workplace, especially in the specific context of website design. Such understandings are of value to library and information professionals working with web professionals either within or beyond libraries. These understandings may also enable information professionals to take a more proactive role in the industry of website design. Finally, the obtained knowledge will contribute to the education of both website-design science and library and information science (LIS) students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual abnormalities, both at the sensory input and the higher interpretive levels, have been associated with many of the symptoms of schizophrenia. Individuals with schizophrenia typically experience distortions of sensory perception, resulting in perceptual hallucinations and delusions that are related to the observed visual deficits. Disorganised speech, thinking and behaviour are commonly experienced by sufferers of the disorder, and have also been attributed to perceptual disturbances associated with anomalies in visual processing. Compounding these issues are marked deficits in cognitive functioning that are observed in approximately 80% of those with schizophrenia. Cognitive impairments associated with schizophrenia include: difficulty with concentration and memory (i.e. working, visual and verbal), an impaired ability to process complex information, response inhibition and deficits in speed of processing, visual and verbal learning. Deficits in sustained attention or vigilance, poor executive functioning such as poor reasoning, problem solving, and social cognition, are all influenced by impaired visual processing. These symptoms impact on the internal perceptual world of those with schizophrenia, and hamper their ability to navigate their external environment. Visual processing abnormalities in schizophrenia are likely to worsen personal, social and occupational functioning. Binocular rivalry provides a unique opportunity to investigate the processes involved in visual awareness and visual perception. Binocular rivalry is the alternation of perceptual images that occurs when conflicting visual stimuli are presented to each eye in the same retinal location. The observer perceives the opposing images in an alternating fashion, despite the sensory input to each eye remaining constant. Binocular rivalry tasks have been developed to investigate specific parts of the visual system. The research presented in this Thesis provides an explorative investigation into binocular rivalry in schizophrenia, using the method of Pettigrew and Miller (1998) and comparing individuals with schizophrenia to healthy controls. This method allows manipulations to the spatial and temporal frequency, luminance contrast and chromaticity of the visual stimuli. Manipulations to the rival stimuli affect the rate of binocular rivalry alternations and the time spent perceiving each image (dominance duration). Binocular rivalry rate and dominance durations provide useful measures to investigate aspects of visual neural processing that lead to the perceptual disturbances and cognitive dysfunction attributed to schizophrenia. However, despite this promise the binocular rivalry phenomenon has not been extensively explored in schizophrenia to date. Following a review of the literature, the research in this Thesis examined individual variation in binocular rivalry. The initial study (Chapter 2) explored the effect of systematically altering the properties of the stimuli (i.e. spatial and temporal frequency, luminance contrast and chromaticity) on binocular rivalry rate and dominance durations in healthy individuals (n=20). The findings showed that altering the stimuli with respect to temporal frequency and luminance contrast significantly affected rate. This is significant as processing of temporal frequency and luminance contrast have consistently been demonstrated to be abnormal in schizophrenia. The current research then explored binocular rivalry in schizophrenia. The primary research question was, "Are binocular rivalry rates and dominance durations recorded in participants with schizophrenia different to those of the controls?" In this second study binocular rivalry data that were collected using low- and highstrength binocular rivalry were compared to alternations recorded during a monocular rivalry task, the Necker Cube task to replicate and advance the work of Miller et al., (2003). Participants with schizophrenia (n=20) recorded fewer alternations (i.e. slower alternation rates) than control participants (n=20) on both binocular rivalry tasks, however no difference was observed between the groups on the Necker cube task. Magnocellular and parvocellular visual pathways, thought to be abnormal in schizophrenia, were also investigated in binocular rivalry. The binocular rivalry stimuli used in this third study (Chapter 4) were altered to bias the task for one of these two pathways. Participants with schizophrenia recorded slower binocular rivalry rates than controls in both binocular rivalry tasks. Using a ‘within subject design’, binocular rivalry data were compared to data collected from a backwardmasking task widely accepted to bias both these pathways. Based on these data, a model of binocular rivalry, based on the magnocellular and parvocellular pathways that contribute to the dorsal and ventral visual streams, was developed. Binocular rivalry rates were compared with performance on the Benton’s Judgment of Line Orientation task, in individuals with schizophrenia compared to healthy controls (Chapter 5). The Benton’s Judgment of Line Orientation task is widely accepted to be processed within the right cerebral hemisphere, making it an appropriate task to investigate the role of the cerebral hemispheres in binocular rivalry, and to investigate the inter-hemispheric switching hypothesis of binocular rivalry proposed by Pettigrew and Miller (1998, 2003). The data were suggestive of intra-hemispheric rather than an inter-hemispheric visual processing in binocular rivalry. Neurotransmitter involvement in binocular rivalry, backward masking and Judgment of Line Orientation in schizophrenia were investigated using a genetic indicator of dopamine receptor distribution and functioning; the presence of the Taq1 allele of the dopamine D2 receptor (DRD2) receptor gene. This final study (Chapter 6) explored whether the presence of the Taq1 allele of the DRD2 receptor gene, and thus, by inference the distribution of dopamine receptors and dopamine function, accounted for the large individual variation in binocular rivalry. The presence of the Taq1 allele was associated with slower binocular rivalry rates or poorer performance in the backward masking and Judgment of Line Orientation tasks seen in the group with schizophrenia. This Thesis has contributed to what is known about binocular rivalry in schizophrenia. Consistently slower binocular rivalry rates were observed in participants with schizophrenia, indicating abnormally-slow visual processing in this group. These data support previous studies reporting visual processing abnormalities in schizophrenia and suggest that a slow binocular rivalry rate is not a feature specific to bipolar disorder, but may be a feature of disorders with psychotic features generally. The contributions of the magnocellular or dorsal pathways and parvocellular or ventral pathways to binocular rivalry, and therefore to perceptual awareness, were investigated. The data presented supported the view that the magnocellular system initiates perceptual awareness of an image and the parvocellular system maintains the perception of the image, making it available to higher level processing occurring within the cortical hemispheres. Abnormal magnocellular and parvocellular processing may both contribute to perceptual disturbances that ultimately contribute to the cognitive dysfunction associated with schizophrenia. An alternative model of binocular rivalry based on these observations was proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotics is a valuable tool for engaging students in the hands-on application of science, technology, engineering, and mathematics (STEM) concepts. Robotics competitions such as FIRST LEGO League (FLL) can increase students’ interest in the STEM subjects and can foster their problem solving and teamwork skills. This paper reports on a study investigating students’ perceptions on the influence of participating in a FLL competition on their learning. The students completed questionnaires regarding their perceptions of their learning during the FLL challenge and were also interviewed to gain a deeper understanding of their questionnaire responses. The results show that the students were engaged with the FLL challenge and held positive views regarding their experience. The results also suggest that students involved with the FLL challenge improved their learning about real-world applications, problem solving, engagement, communication, and the application of the technology/engineering cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer games have become a commonplace but engaging activity among students. They enjoy playing computer games as they can perform larger-than-life activities virtually such as jumping from great heights, flying planes, and racing cars; actions that are otherwise not possible in real life. Computer games also offer user interactivity which gives them a certain appeal. Considering this appeal, educators should consider integrating computer games into student learning and to encourage students to author computer games of their own. It is thought that students can be engaged in learning by authoring and using computer games and can also gain essential skills such as collaboration, teamwork, problem solving and deductive reasoning. The research in this study revolves around building student engagement through the task of authoring computer games. The study aims to demonstrate how the creation and sharing of student-authored educational games might facilitate student engagement and how ICT (information and communication technology) plays a supportive role in student learning. Results from this study may lead to the broader integration of computer games into student learning and contribute to similar studies. In this qualitative case study, based in a state school in a low socio-economic area west of Brisbane, Australia, students were selected in both junior and senior secondary classes who have authored computer games as a part of their ICT learning. Senior secondary students (Year 12 ICT) were given the task of programming the games, which were to be based on Mathematics learning topics while the junior secondary students (Year 8 ICT) were given the task of creating multimedia elements for the games. A Mathematics teacher volunteered to assist in the project and provided guidance on the inclusion of suitable Mathematics curricular content into these computer games. The student-authored computer games were then used to support another group of Year 8 Mathematics students to learn the topics of Area, Volume and Time. Data was collected through interviews, classroom observations and artefacts. The teacher researcher, acting in the role of ICT teacher, coordinated with the students and the Mathematics teacher to conduct this study. Instrumental case study was applied as research methodology and Third Generation Activity Theory served as theoretical framework for this study. Data was analysed adopting qualitative coding procedures. Findings of this study indicate that having students author and play computer games promoted student engagement and that ICT played a supportive role in learning and allowed students to gain certain essential skills. Although this study will suggest integrating computer games to support classroom learning, it cannot be presumed that computer games are an immediate solution for promoting student engagement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Participant performance is critical to the success of projects. At the same time, enhancing the satisfaction of participants not only helps in problem solving but also improves their motivation and cooperation. However, previous research related to participant satisfaction is primarily concerned with clients and customers and relatively little attention has been paid to contractors. This paper investigates how the performance of project participants affects contractor project satisfaction in terms of the client's clarity of objectives (OC) and promptness of payments (PP), designer carefulness (DC), construction risk management (RM), the effectiveness their contribution (EW) and mutual respect and trust (RT). With 125 valid responses from contractors in Malaysia, a contractor satisfaction model is developed based on structural equation modelling. The results demonstrate the necessity for dividing abstract satisfaction into two dimensions, comprising economic-related satisfaction (ES) and production-related satisfaction (PS), with DC, OC, PP and RM having significant effects on ES, while DC, OC, EW and RM influence PS. In addition, the model tests the indirect effects of these performance variables on ES and PS. In particular, OC indirectly affects ES and PS through mediation of RM and DC respectively. The results also provide opportunities for improving contractor satisfaction and supplementing the contractor selection criteria for clients.