157 resultados para Navier-stokes Equation
Resumo:
Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.
Resumo:
Objective: To develop bioelectrical impedance analysis (BIA) equations to predict total body water (TBW) and fat-free mass (FFM) of Sri Lankan children. Subjects/Methods: Data were collected from 5- to 15-year-old healthy children. They were randomly assigned to validation (M/F: 105/83) and cross-validation (M/F: 53/41) groups. Height, weight and BIA were measured. TBW was assessed using isotope dilution method (D2 O). Multiple regression analysis was used to develop preliminary equations and cross-validated on an independent group. Final prediction equation was constructed combining the two groups and validated by PRESS (prediction of sum of squares) statistics. Impedance index (height2/impedance; cm2/Ω), weight and sex code (male = 1; female = 0) were used as variables. Results: Independent variables of the final prediction equation for TBW were able to predict 86.3% of variance with root means-squared error (RMSE) of 2.1l. PRESS statistics was 2.1l with press residuals of 1.2l. Independent variables were able to predict 86.9% of variance of FFM with RMSE of 2.7 kg. PRESS statistics was 2.8 kg with press residuals of 1.4 kg. Bland Altman technique showed that the majority of the residuals were within mean bias±1.96 s.d. Conclusions: Results of this study provide BIA equation for the prediction of TBW and FFM in Sri Lankan children. To the best of our knowledge there are no published BIA prediction equations validated on South Asian populations. Results of this study need to be affirmed by more studies on other closely related populations by using multi-component body composition assessment.
Resumo:
Future time perspective - the way individuals perceive their remaining time in life - importantly influences socio-emotional goals and motivational outcomes. Recently, researchers have called for studies that investigate relationships between personality and future time perspective. Using a cross-lagged panel design, this study investigated effects of chronic regulatory focus dimensions (promotion and prevention orientation) on future time perspective dimensions (focus on opportunities and limitations). Survey data were collected two times, separated by a 3. month time lag, from 85 participants. Results of structural equation modeling showed that promotion orientation had a positive lagged effect on focus on opportunities, and prevention orientation had a positive lagged effect on focus on limitations.
Resumo:
PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.
Resumo:
Considering the growing energy needs and concern for environmental degradation, clean and inexhaustible energy sources, e.g solar energy are receiving greater attention for various applications. The use of solar energy systems for low temperature applications reduces the burden on conventional fossil fuels and has little or no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporatorcollector (SEC) is basically an unglazed flat plate collector where refrigerant, like R134a, is used as the working fluid. As the operating temperature of SEC is very low, it collects energy both from solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. The capability of SEC to utilize ambient energy also enables the system to operate at night. Therefore it is not appropriate to use for the evaluation of performance of SEC by conventional efficiency equation where ambient energy and condensation is not considered as energy input in addition to irradiation. In the National University of Singapore, several Solar Assisted Heat Pump (SAHP) systems were built for the evaluation of performance under the metrological condition of Singapore for thermal applications of desalination and SEC was the main component to harness renewable energy. In this paper, the design and performance of SEC are explored. Furthermore, an attempt is made to develop an efficiency equation for SEC and maximum efficiency attained 98% under the meteorological condition of Singapore.
Resumo:
This investigation aimed to quantify metabolic rate when wearing an explosive ordnance disposal (EOD) ensemble (~33kg) during standing and locomotion; and determine whether the Pandolf load carriage equation accurately predicts metabolic rate when wearing an EOD ensemble during standing and locomotion. Ten males completed 8 trials with metabolic rate measured through indirect calorimetry. Walking in EOD at 2.5, 4.0 and 5.5km·h−1 was significantly (p < 0.05) greater than matched trials without the EOD ensemble by 49% (127W), 65% (213W) and 78% (345W), respectively. Mean bias (95% limits of agreement) between predicted and measured metabolism during standing, 2.5, 4 and 5.5km·h−1 were 47W (19 to 75W); −111W (−172 to −49W); −122W (−189 to −54W) and −158W (−245 to −72W), respectively. The Pandolf equation significantly underestimated measured metabolic rate during locomotion. These findings have practical implications for EOD technicians during training and operation and should be considered when developing maximum workload duration models and work-rest schedules.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.