309 resultados para Multi-Equation Income Model
Resumo:
Purpose - The purpose of this paper is to present a model for curricular integration of information literacy for undergraduate programs in higher education. Design/methodology/approach - Data are drawn from individual interviews at three universities in Australia and curricular integration working experience at a New Zealand university. Sociocultural theories are adopted in the research process and in the development of the model, Findings - Key characteristics of the curriculum integration of information literacy were identified and an information literacy integration model was developed. The S2J2 key behaviours for campus-wide multi-partner collaboration in information literacy integration were also identified. Research limitations/implications - The model was developed without including the employer needs. Through the process of further research, the point of view of the employer on how to provide information literacy education needs to be explored in order to strengthen the model in curricular design. Practical implications - The information literacy integration model was developed based on practical experience in higher education and has been applied in different undergraduate curricular programs. The model could be used or adapted by both librarians and academics when they integrate information literacy into an undergraduate curriculum from a lower level to a higher level. Originality/value - The information literacy integration model was developed based on recent PhD research. The model integrates curriculum, pedagogy and learning theories, information literacy theories, information literacy guidelines, people and collaborative together. The model provides a framework of how information literacy can be integrated into multiple courses across an undergraduate academic degree in higher education.
Resumo:
Background: The current model of care for breast cancer is focused on disease treatment followed by ongoing recurrence surveillance. This approach lacks attention to the patients’ physical and functional well-being. Breast cancer treatment sequelae can lead to physical impairments and functional limitations. Common impairments include pain, fatigue, upper extremity dysfunction, lymphedema, weakness, joint arthralgia, neuropathy, weight gain, cardiovascular effects, and osteoporosis. Evidence supports prospective surveillance for early identification and treatment as a means to prevent or mitigate many of these concerns. Purpose: This paper proposes a prospective surveillance model for physical rehabilitation and exercise that can be integrated with disease treatment to create a more comprehensive approach to survivorship health care. The goals of the model are to promote surveillance for common physical impairments and functional limitations associated with breast cancer treatment, to provide education to facilitate early identification of impairments, to introduce rehabilitation and exercise intervention when physical impairments are identified and to promote and support physical activity and exercise behaviors through the trajectory of disease treatment and survivorship. Methods: The model is the result of a multi-disciplinary meeting of research and clinical experts in breast cancer survivorship and representatives of relevant professional and advocacy organizations. Outcomes: The proposed model identifies time points during breast cancer care for assessment of and education about physical impairments. Ultimately, implementation of the model may influence incidence and severity of breast cancer treatment related physical impairments. As such, the model seeks to optimize function during and following treatment and positively influence a growing survivorship community.
Resumo:
This study examined the effect that temporal order within the entrepreneurial discovery exploitation process has on the outcomes of venture creation. Consistent with sequential theories of discovery-exploitation, the general flow of venture creation was found to be directed from discovery toward exploitation in a random sample of nascent ventures. However, venture creation attempts which specifically follow this sequence derive poor outcomes. Moreover, simultaneous discovery-exploitation was the most prevalent temporal order observed, and venture attempts that proceed in this manner more likely become operational. These findings suggest that venture creation is a multi-scale phenomenon that is at once directional in time, and simultaneously driven by symbiotically coupled discovery and exploitation.
Resumo:
Aims Multi-method study including two parts: Study One: three sets of observations in two regional areas of Queensland Study Two: two sets of parent intercept interviews conducted in Toowoomba, Queensland. The aim of Study Two is to determine parents’ views, opinions and knowledge of child restraint practices and the Queensland legislative amendment.
Resumo:
Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.
Resumo:
The improvement and optimization of business processes is one of the top priorities in an organization. Although process analysis methods are mature today, business analysts and stakeholders are still hampered by communication issues. That is, analysts cannot effectively obtain accurate business requirements from stakeholders, and stakeholders are often confused about analytic results offered by analysts. We argue that using a virtual world to model a business process can benefit communication activities. We believe that virtual worlds can be used as an efficient model-view approach, increasing the cognition of business requirements and analytic results, as well as the possibility of business plan validation. A healthcare case study is provided as an approach instance, illustrating how intuitive such an approach can be. As an exploration paper, we believe that this promising research can encourage people to investigate more research topics in the interdisciplinary area of information system, visualization and multi-user virtual worlds.
Resumo:
Enterprise architecture (EA) management has become an intensively discussed approach to manage enterprise transformations. Despite the popularity and potential of EA, both researchers and practitioners lament a lack of knowledge about the realization of benefits from EA. To determine the benefits from EA, we explore the various dimensions of EA benefit realization and report on the development of a validated and robust measurement instrument. In this paper, we test the reliability and construct validity of the EA benefit realization model (EABRM), which we have designed based on the DeLone & McLean IS success model and findings from exploratory interviews. A confirmatory factor analysis confirms the existence of an impact of five distinct and individually important dimensions on the benefits derived from EA: EA artefact quality, EA infrastructure quality, EA service quality, EA culture, and EA use. The analysis presented in this paper shows that the EA benefit realization model is an instrument that demonstrates strong reliability and validity.
Resumo:
Motorcyclists are the most crash-prone road-user group in many Asian countries including Singapore; however, factors influencing motorcycle crashes are still not well understood. This study examines the effects of various roadway characteristics, traffic control measures and environmental factors on motorcycle crashes at different location types including expressways and intersections. Using techniques of categorical data analysis, this study has developed a set of log-linear models to investigate multi-vehicle motorcycle crashes in Singapore. Motorcycle crash risks in different circumstances have been calculated after controlling for the exposure estimated by the induced exposure technique. Results show that night-time influence increases crash risks of motorcycles particularly during merging and diverging manoeuvres on expressways, and turning manoeuvres at intersections. Riders appear to exercise more care while riding on wet road surfaces particularly during night. Many hazardous interactions at intersections tend to be related to the failure of drivers to notice a motorcycle as well as to judge correctly the speed/distance of an oncoming motorcycle. Road side conflicts due to stopping/waiting vehicles and interactions with opposing traffic on undivided roads have been found to be as detrimental factors on motorcycle safety along arterial, main and local roads away from intersections. Based on the findings of this study, several targeted countermeasures in the form of legislations, rider training, and safety awareness programmes have been recommended.
Resumo:
The Wright-Fisher model is an Itô stochastic differential equation that was originally introduced to model genetic drift within finite populations and has recently been used as an approximation to ion channel dynamics within cardiac and neuronal cells. While analytic solutions to this equation remain within the interval [0,1], current numerical methods are unable to preserve such boundaries in the approximation. We present a new numerical method that guarantees approximations to a form of Wright-Fisher model, which includes mutation, remain within [0,1] for all time with probability one. Strong convergence of the method is proved and numerical experiments suggest that this new scheme converges with strong order 1/2. Extending this method to a multidimensional case, numerical tests suggest that the algorithm still converges strongly with order 1/2. Finally, numerical solutions obtained using this new method are compared to those obtained using the Euler-Maruyama method where the Wiener increment is resampled to ensure solutions remain within [0,1].
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi term time-space fractional models including fractional Laplacian.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Resumo:
Fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBF) to discretize the space variable. By contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example is presented to describe the fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating of fractional differential equations, and it has good potential in development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.