237 resultados para Motion-based driving simulator
Resumo:
The present study examined the predictors of the intentions of young people aged between 17 and 24 years (N = 196) to use their mobile phone while driving. Using convenience sampling, drivers were recruited at petrol station travel centres to complete a cross-sectional survey. The Theory of Planned Behaviour constructs of attitude, subjective norm, and perceived behavioural control (PBC) were measured, as well as mobile phone involvement - a construct based on behavioural addiction components to reflect people’s cognitive and behavioural interaction with their mobile phone. Attitudes, PBC, and mobile phone involvement predicted young people’s intentions to use their mobile phone while driving, highlighting the need for interventions to address the perceived rewards and costs of the behaviour and to challenge the potentially powerful need to be constantly connected with others by technology irrespective of the associated dangers.
Resumo:
Objective: To evaluate the feasibility and effect of a water-based exercise (WBE) program on lymphedema status and shoulder range of motion (ROM) among women with breast cancer related lymphedema. Design: Single-blinded, randomized controlled pilot trial. Twenty-nine eligible breast cancer survivors (median 10 years after surgery) with arm lymphedema (median 21% inter limb difference) were included and randomized into intervention (n= 15) or control (n=14). Twenty-five participants completed the study. The intervention was at least twice weekly WBE for 8 weeks; supervised initially but performed independently during the study period. Outcomes of interest were feasibility as measured by retention and adherence, lymphedema status as measured by optoelectronic perometry, bioimpedance spectroscopy and tissue dielectric constant, and shoulder range of motion (ROM) as measured by goniometer. Results: Four participants were not measured at post-intervention and were not included in the analysis (retention). Four participants in the intervention group did not perform the minimum WBE criteria set (adherence). No effect was found on lymphedema status. Compared to the control group, median ROM change for flexion was 6 (1-10) degrees (p<0.001) and 6 (0-15.5) degrees (p=0,07) for external rotation. Clinically relevant increase in the intervention group was found for 36% in flexion (p≤0.05) and (57%) in external rotation (p≤0.05) compared to controls. Conclusions: This study shows WBE is feasible for breast cancer survivors with arm lymphedema and that shoulder ROM can be improved years after cancer treatment has been completed.
Resumo:
Exercise offers the potential to improve circulation, wound healing outcomes, and functional and emotional wellbeing for adults experiencing venous leg ulceration. Individuals with chronic leg ulcers typically have multiple comorbidities such as arthritis, asthma, chronic obstructive airways disease, cardiac disease or neuromuscular disorders, which would also benefit from regular exercise. The aim of this review is to highlight the relationships between the calf muscle pump and venous return and range of ankle motion for adults with venous leg ulcers. The effect of exercise will also be considered in relation to the healing rates for adults experiencing venous leg ulceration. The findings suggest there is evidence that exercises which engage the calf muscle pump improve venous return. Ankle range of motion, which is crucial for complete activation of the calf muscle pump, can also be improved with simple, home-based exercise programs. However, observational studies still report that venous leg ulcer patients are less physically active than age-matched controls. Therefore, the behavioural reasons for not exercising must be considered. Only two studies, both underpowered, have assessed the effect of exercise on the healing rates of venous leg ulcers. In conclusion, exercise is feasible with this patient population. However, future studies with larger sample sizes are needed to provide stronger evidence to support the therapeutic benefit of exercise as an adjunct therapy in wound care.
Rotorcraft collision avoidance using spherical image-based visual servoing and single point features
Resumo:
This paper presents a reactive collision avoidance method for small unmanned rotorcraft using spherical image-based visual servoing. Only a single point feature is used to guide the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera model ensures the target always remains visible. A decision strategy to stop the avoidance control is derived based on the properties of spiral like motion, and the effect of accurate range measurements on the control scheme is discussed. We show that using a poor range estimate does not significantly degrade the collision avoidance performance, thus relaxing the need for accurate range measurements. We present simulated and experimental results using a small quad rotor to validate the approach.
Resumo:
Young drivers are overrepresented in motor vehicle crash rates, and their risk increases when carrying similar aged passengers. Graduated Driver Licensing strategies have demonstrated effectiveness in reducing fatalities among young drivers, however complementary approaches may further reduce crash rates. Previous studies conducted by the researchers have shown that there is considerable potential for a passenger focus in youth road safety interventions, particularly involving the encouragement of young passengers to intervene in their peers’ risky driving (Buckley, Chapman, Sheehan & Davidson, 2012). Additionally, this research has shown that technology-based applications may be a promising means of delivering passenger safety messages, particularly as young people are increasingly accessing web-based and mobile technologies. This research describes the participatory design process undertaken to develop a web-based road safety program, and involves feasibility testing of storyboards for a youth passenger safety application. Storyboards and framework web-based materials were initially developed for a passenger safety program, using the results of previous studies involving online and school-based surveys with young people. Focus groups were then conducted with 8 school staff and 30 senior school students at one public high school in the Australian Capital Territory. Young people were asked about the situations in which passengers may feel unsafe and potential strategies for intervening in their peers’ risky driving. Students were also shown the storyboards and framework web-based material and were asked to comment on design and content issues. Teachers were also shown the material and asked about their perceptions of program design and feasibility. The focus group data will be used as part of the participatory design process, in further developing the passenger safety program. This research describes an evidence-based approach to the development of a web-based application for youth passenger safety. The findings of this research and resulting technology will have important implications for the road safety education of senior high school students.
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Wound debridement refers to the removal of necrotic, devitalized, or contaminated tissue and/or foreign material to promote wound healing. Surgical debridement uses sharp instruments to cut dead tissue from a wound and it is the quickest and most efficient method of debridement. A wound debridement simulator [1,2] can ensure that a medical trainee is competent prior to performing a procedure on a genuine patient. Irrigation is performed at different stages of debridement in order to remove debris and reduce the bacteria count through rinsing the wound. This paper presents a novel approach for realistic irrigation visualization based on texture representations of debris. This approach applies image processing techniques to a series of images, which model the cleanliness of the wound. The active texture is generated and updated dynamically based on the irrigation state, location, and range. Presented results demonstrate that texture mapping and image processing techniques can provide effective and efficient solutions for irrigation visualization in the wound debridement simulator.
Resumo:
A simulation-based training system for surgical wound debridement was developed and comprises a multimedia introduction, a surgical simulator (tutorial component), and an assessment component. The simulator includes two PCs, a haptic device, and mirrored display. Debridement is performed on a virtual leg model with a shallow laceration wound superimposed. Trainees are instructed to remove debris with forceps, scrub with a brush, and rinse with saline solution to maintain sterility. Research and development issues currently under investigation include tissue deformation models using mass-spring system and finite element methods; tissue cutting using a high-resolution volumetric mesh and dynamic topology; and accurate collision detection, cutting, and soft-body haptic rendering for two devices within the same haptic space.
Resumo:
This study aimed to assess the feasibility of a home-based exercise program and examine the effects on the healing rates of venous leg ulcers. A 12 –week randomised controlled trial was conducted investigating the effects of an exercise intervention compared to a usual care group. Participants in both groups (n = 13) had active venous ulceration and were treated in a metropolitan hospital outpatients clinic in Australia. Data were collected on recruitment from medical records, clinical assessment and questionnaires. Follow-up data on progress in healing and treatments were collected fortnightly for 12 weeks. Calf muscle pump function data were collected at baseline and 12 weeks from recruitment. Range of ankle motion data were collected at baseline, 6 and 12 weeks from recruitment. This pilot study indicated that the intervention was feasible. Clinical significance was observed in the intervention group with a 32% greater decrease in ulcer size (p=0.34) than the control group, and a 10% (p=0.74) improvement in the number of participants healed in the intervention group compared to the control group. Significant differences between groups over time were observed in calf muscle pump function parameters; (ejection fraction [p = 0.05]; residual volume fraction [p = 0.04]) and range of ankle motion (p = 0.01). This pilot study is one of the first studies to examine and measure clinical healing rates for participants involved in a home-based progressive resistance exercise program. Further research is warranted with a larger multi-site study.
Resumo:
The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
Drink driving is a major public health issue and this report examines the experiences of convicted offenders who participated in an established drink driving rehabilitation program Under the Limit (UTL). Course completers were surveyed at least three months after they had finished the 11-week UTL course. The aim of this study was to examine whether the UTL program reduced the level of alcohol consumption either directly as a result of participation in the UTL drink driving program or through increased use of community alcohol program by participants. The research involved a self-report outcome evaluation to determine whether the self-reported levels of alcohol use after the course had changed from the initial alcohol use reported by offenders. The findings are based on the responses of 30 drink-driving offenders who had completed the UTL program (response rate: 20%). While a process evaluation was proposed in the initial application, the low response rate meant that this follow up research was not feasible. The response rate was low for two reasons, it was difficult to: recruit participants who consented to follow up, and subsequently locate and survey those who had consented to involvement.
Resumo:
An increasing body of research is highlighting the involvement of illicit drugs in many road fatalities. Deterrence theory has been a core conceptual framework underpinning traffic enforcement as well as interventions designed to reduce road fatalities. Essentially the effectiveness of deterrence-based approaches is predicated on perceptions of certainty, severity, and swiftness of apprehension. However, much less is known about how the awareness of legal sanctions can impact upon the effectiveness of deterrence mechanisms and whether promoting such detection methods can increase the deterrent effect. Nevertheless, the implicit assumption is that individuals aware of the legal sanctions will be more deterred. This study seeks to explore how awareness of the testing method impacts upon the effectiveness of deterrence-based interventions and intentions to drug drive again in the future. In total, 161 participants who reported drug driving in the previous six months took part in the current study. The results show that awareness of testing had a small effect upon increasing perceptions of the certainty of apprehension and severity of punishment. However, awareness was not a significant predictor of intentions to drug drive again in the future. Importantly, higher levels of drug use were a significant predictor of intentions to drug drive in the future. Whilst awareness does have a small effect on deterrence variables, the influence of levels of drug use seems to reduce any deterrent effect.