392 resultados para Injury Prediction.
Resumo:
Anthropometry is a simple and cost-efficient method for the assessment of body composition. However prediction equations to estimate body composition using anthropometry should be ‘population-specific’. Most popular body composition prediction equations for Japanese females were proposed more than 40 years ago and there is some concern regarding their usefulness in Japanese females living today. The aim of this study was to compare percentage body fat (%BF) estimated from anthropometry and dual energy x-ray absorptiometry (DXA) to examine the applicability of commonly used prediction equations in young Japanese females. Body composition of 139 Japanese females aged between 18 and 27 years of age (BMI range: 15.1–29.1 kg/m2) was measured using whole-body DXA (Lunar DPX-LIQ) scans. From anthropometric measurements %BF was estimated using four equations developed from Japanese females. The results showed that the traditionally employed prediction equations for anthropometry significantly (p<0.01) underestimate %BF of young Japanese females and therefore are not valid for the precise estimation of body composition. New %BF prediction equations were proposed from the DXA and anthropometry results. Application of the proposed equations may assist in more accurate assessment of body fatness in Japanese females living today.
Resumo:
The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology
Resumo:
Community beliefs related to intentional injury inflicted by others were examined in a population-based telephone survey (n= 1032) in Queensland, Australia. Young adults 18-24 years were nominated as the most likely to be intentionally injured. 89.1% of respondents nominating this group believed that the injury incidents occur in alcohol environments. Though respondents from this age group also identified 18-24 yo as most likely to be intentionally injured, this was at a significantly lower level than did parents or 25-64 yo respondents. Responsibility for preventing injuries was placed on proprietors of licensed premises, schools and parents/family of the victim for alcohol, school and home environments respectively. Beliefs were aligned with prevalence data on intentional injury demonstrating a high level of awareness in the community about likely victims and situations where intentional injuries occur. Interventions could target families of young adults to capitalize on high levels of awareness about young adult vulnerability.
Resumo:
Associations between young children's attributions of emotion at different points in a story, and with regard to their own prediction about the story's outcome, were investigated using two hypothetical scenarios of social and emotional challenge (social entry and negative event). First grade children (N = 250) showed an understanding that emotions are tied to situational cues by varying the emotions they attributed both between and within scenarios. Furthermore, emotions attributed to the main protagonist at the beginning of the scenarios were differentially associated with children's prediction of a positive or negative outcome and with the valence of the emotion attributed at the end of the scenario. Gender differences in responses to some items were also found. © 2010 The British Psychological Society.
Resumo:
The International Classification of Diseases (ICD) is used to categorise diseases, injuries and external causes, and is a key epidemiological tool enabling the storage and retrieval of data from health and vital records to produce core international mortality and morbidity statistics. The ICD is updated periodically to ensure the classification remains current and work is now underway to develop the next revision, ICD-11. There have been almost 20 years since the last ICD edition was published and over 60 years since the last substantial structural revision of the external causes chapter. Revision of such a critical tool requires transparency and documentation to ensure that changes made to the classification system are recorded comprehensively for future reference. In this paper, the authors provide a history of external causes classification development and outline the external cause structure. Approaches to manage ICD-10 deficiencies are discussed and the ICD-11 revision approach regarding the development of, rationale for and implications of proposed changes to the chapter are outlined. Through improved capture of external cause concepts in ICD-11, a stronger evidence base will be available to inform injury prevention, treatment, rehabilitation and policy initiatives to ultimately contribute to a reduction in injury morbidity and mortality.
Resumo:
A process evaluation enables understanding of critical issues that can inform the improved, ongoing implementation of an intervention program. This study describes the process evaluation of a comprehensive, multi-level injury prevention program for adolescents. The program targets change in injury associated with violence, transport and alcohol risks and incorporates two primary elements: an 8-week, teacher delivered attitude and behaviour change curriculum for Grade 8 students; and a professional development program for teachers on school level methods of protection, focusing on strategies to increase students’ connectedness to school.
Resumo:
Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.
Resumo:
In New Zealand, 200,000 licensed shooters (5.5% of the population) own an estimated 1 million firearms, 9 times more guns per capita than in England and Wales and 20% more than in Australia. Based on a 3 year study of firearm theft in New Zealand, this paper concludes that insecure storage of lawfully held weapons by licensed owners poses a significant public health and safety risk. Furthermore, this paper concludes that the failure of the police to enforce New Zealand gun security laws, and the government's hesitancy to develop firearm education and regulation policies, exacerbates insecure firearm storage, a key factor in firearm-related theft, injury, suicide, violence and criminal activity.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
This paper presents the benefits and issues related to travel time prediction on urban network. Travel time information quantifies congestion and is perhaps the most important network performance measure. Travel time prediction has been an active area of research for the last five decades. The activities related to ITS have increased the attention of researchers for better and accurate real-time prediction of travel time. Majority of the literature on travel time prediction is applicable to freeways where, under non-incident conditions, traffic flow is not affected by external factors such as traffic control signals and opposing traffic flows. On urban environment the problem is more complicated due to conflicting areas (intersections), mid-link sources and sinks etc. and needs to be addressed.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
Commonwealth Scientific and Industrial Research Organization (CSIRO) has recently conducted a technology demonstration of a novel fixed wireless broadband access system in rural Australia. The system is based on multi user multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM). It demonstrated an uplink of six simultaneous users with distances ranging from 10 m to 8.5 km from a central tower, achieving 20 bits s/Hz spectrum efficiency. This paper reports on the analysis of channel capacity and bit error probability simulation based on the measured MUMIMO-OFDM channels obtained during the demonstration, and their comparison with the results based on channels simulated by a novel geometric optics based channel model suitable for MU-MIMO OFDM in rural areas. Despite its simplicity, the model was found to predict channel capacity and bit error rate probability accurately for a typical MU-MIMO-OFDM deployment scenario.
Resumo:
Injury is the leading cause of death among young people, and involvement in health risk behaviors, such as alcohol use and transport-related risks, is related to increased risk for injury. Effective health promotion programs for adolescents focus on multiple levels, including relationships with peers and parents, student knowledge, behavior and attitudes, and school-level factors such as school connectedness. This study describes the pilot evaluation of a comprehensive, multi-level injury prevention program for 13-14 year old adolescents, targeting change in injury associated with transport and alcohol risks. The program, called Skills for Preventing Injury in Youth (SPIY), incorporates two primary elements: an 8-week, teacher delivered attitude and behavior change curriculum with peer protection and first aid messages; and professional development for program teachers focusing on strategies to increase students’ connectedness to school. Five Australian high schools were recruited for the pilot evaluation research, with three being assigned to receive intervention components and two assigned as curriculum-as-usual controls. In the intervention schools, 118 Year 8 students participated in surveys at baseline, with 105 completing surveys at follow up, six months following the intervention. In the control schools, 196 Year 8 students completed surveys at baseline and 207 at follow up. Survey measures included self-reported injury, risk taking behavior and school connectedness. Results showed that students in the control schools were significantly more likely to report riding bikes without helmets, riding with dangerous drivers, having driven cars on the road, and using alcohol six months after the program, while the intervention group showed no such increase in these behaviors. Additionally, students in the control schools were significantly more likely to report having had pedestrian-related injuries at follow up than they were at the baseline measurement, while intervention school students showed no change. There was also a trend observed in terms of a decrease in bicycle related injuries among intervention school students, compared with a slight increasing trend in bicycle injuries among control students. Overall, scores on the school connectedness scale decreased significantly from baseline to follow up for both intervention and control students, however measurement limitations may have impacted on results relating to students’ connectedness. Overall, the SPIY program has shown promising results in regards to prevention of students’ health risk behavior and injuries. Evidence suggests that the curriculum component was important; however there was limited evidence to suggest that teacher training in school connectedness strategies contributed to these promising results. While school connectedness may be an important factor to target in risk and injury prevention programs, programs may need to incorporate whole-of-school strategies or target a broader range of teachers than were selected for the current research.
Resumo:
Compound pelvic fractures are deemed to be one of the most severe orthopaedic injuries with an extremely high morbidity and mortality. After the initial resuscitation phase the prevention of pelvic sepsis is one of the main treatment goals for patients with an open pelvic fracture. If there is a suspicion of a rectal injury or if the wounds are in the perineal area, The Princess Alexandra Hospital's management plan includes early faecal diversion combined with vigorous soft tissue debridement, VAC(®) therapy and (if indicated) external fixation of the pelvic fracture. We present our flowchart for the treatment of trauma patients with compound pelvic fractures illustrated by a case report describing a 32 year old patient who sustained an open pelvic ring injury in a workplace accident. The aim of this paper is to underline the importance of a safe, straightforward approach to compound pelvic fractures.
Resumo:
The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model.